In this paper, we consider the self-organisation of sensors within a network deployed for wide area surveillance. We present a decentralised coordination algorithm based upon the max-sum algorithm and demonstrate how self-organisation can be achieved within a setting where sensors are deployed with no a priori information regarding their local environment. These energy-constrained sensors first learn how their actions interact with those of neighbouring sensors, and then use the max-sum algorithm to coordinate their sense/sleep schedules in order to maximise the effectiveness of the sensor network as a whole. In a simulation we show that this approach yields a 30% reduction in the number of vehicles that the sensor network fails to detect (compared to an uncoordinated network), and this performance is close to that achieved by a benchmark centralised optimisation algorithm (simulated annealing)
Self-organising Sensors for Wide Area Surveillance Using the Max-sum Algorithm
FARINELLI, Alessandro;
2010-01-01
Abstract
In this paper, we consider the self-organisation of sensors within a network deployed for wide area surveillance. We present a decentralised coordination algorithm based upon the max-sum algorithm and demonstrate how self-organisation can be achieved within a setting where sensors are deployed with no a priori information regarding their local environment. These energy-constrained sensors first learn how their actions interact with those of neighbouring sensors, and then use the max-sum algorithm to coordinate their sense/sleep schedules in order to maximise the effectiveness of the sensor network as a whole. In a simulation we show that this approach yields a 30% reduction in the number of vehicles that the sensor network fails to detect (compared to an uncoordinated network), and this performance is close to that achieved by a benchmark centralised optimisation algorithm (simulated annealing)I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.