Mesenchymal stem cells (MSCs) are adult stem cells that hold great promise in the field of regenerative medicine. They can be isolated from almost any tissue of the body and display, after expansion, very similar properties and minor differences, probably due to their microenvironment of origin. Expansion in vitro can be obtained in cytokine-free, serum-enriched media, as well as in serum-free, basic fibroblast growth factor-enriched media. A detailed immunophenotypic analysis is required to test the purity of the preparation, but no unique distinguishing marker has been described as yet. Functional assays, that is, differentiation studies in vitro, are needed to prove multilineage differentiation of expanded cells, and demonstration of pluripotency is necessary to identify most immature precursors. MSCs show powerful immunomodulative properties toward most of the cells of the immune system: this strengthens the theoretical rationale for their use also in an allogeneic setting across the major histocompatibility complex (MHC) immunological barriers. Systemic intravenous injection and local use have been tried: after systemic injection, MSCs show a high degree of chemotaxis based on pro-inflammatory cytokines, and localize at inflamed and neoplastic tissues; local regeneration has been improved using synthetic, as well as organic scaffolds. On the other hand, inadequate heterotopic in vivo differentiation and neoplastic transformation are potential risks of this form of cell therapy, even if evidence of this sort has been collected only from studies in mice, and generally after prolonged in vitro expansion. This review tries to provide a detailed technical overview of the methods used for human bone-marrow (BM)-derived and adipose-tissue (AT)-derived MSC isolation, in vitro expansion, and characterization for tissue repair. We chose to use BM-MSCs as a model to describe techniques that have been used for MSC isolation and expansion from very different sources, and AT-MSCs as an example of a reliable and increasingly common alternative source.

Human Bone Marrow and Adipose Tissue Mesenchymal Stem Cells: A User's Guide

MOSNA, Federico;KRAMPERA, Mauro
2010-01-01

Abstract

Mesenchymal stem cells (MSCs) are adult stem cells that hold great promise in the field of regenerative medicine. They can be isolated from almost any tissue of the body and display, after expansion, very similar properties and minor differences, probably due to their microenvironment of origin. Expansion in vitro can be obtained in cytokine-free, serum-enriched media, as well as in serum-free, basic fibroblast growth factor-enriched media. A detailed immunophenotypic analysis is required to test the purity of the preparation, but no unique distinguishing marker has been described as yet. Functional assays, that is, differentiation studies in vitro, are needed to prove multilineage differentiation of expanded cells, and demonstration of pluripotency is necessary to identify most immature precursors. MSCs show powerful immunomodulative properties toward most of the cells of the immune system: this strengthens the theoretical rationale for their use also in an allogeneic setting across the major histocompatibility complex (MHC) immunological barriers. Systemic intravenous injection and local use have been tried: after systemic injection, MSCs show a high degree of chemotaxis based on pro-inflammatory cytokines, and localize at inflamed and neoplastic tissues; local regeneration has been improved using synthetic, as well as organic scaffolds. On the other hand, inadequate heterotopic in vivo differentiation and neoplastic transformation are potential risks of this form of cell therapy, even if evidence of this sort has been collected only from studies in mice, and generally after prolonged in vitro expansion. This review tries to provide a detailed technical overview of the methods used for human bone-marrow (BM)-derived and adipose-tissue (AT)-derived MSC isolation, in vitro expansion, and characterization for tissue repair. We chose to use BM-MSCs as a model to describe techniques that have been used for MSC isolation and expansion from very different sources, and AT-MSCs as an example of a reliable and increasingly common alternative source.
2010
UMBILICAL-CORD BLOOD; IN-VITRO EXPANSION; EX-VIVO EXPANSION; STROMAL CELLS; PROGENITOR CELLS; GROWTH-FACTOR; NEURONAL DIFFERENTIATION; MYOCARDIAL-INFARCTION; PROLIFERATIVE CAPACITY; CLINICAL-APPLICATIONS
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/345946
Citazioni
  • ???jsp.display-item.citation.pmc??? 104
  • Scopus 266
  • ???jsp.display-item.citation.isi??? 238
social impact