We study various properties of closed relativistic strings. In particular, we characterize their closure under uniform convergence, extending a previous result by Y. Brenier on graph-like unbounded strings, and we discuss some related examples.Then we study the collapsing profile of uniformly convex planar strings which start with zero initial velocity, and we obtain a result analogous to the well-known theorem of Gage and Hamilton for the curvature flow of plane curves. We conclude the paper with the discussion of an example of weak Lipschitz evolution starting from the square in the plane.

Closure and convexity results for closed relativistic strings

ORLANDI, Giandomenico
2010-01-01

Abstract

We study various properties of closed relativistic strings. In particular, we characterize their closure under uniform convergence, extending a previous result by Y. Brenier on graph-like unbounded strings, and we discuss some related examples.Then we study the collapsing profile of uniformly convex planar strings which start with zero initial velocity, and we obtain a result analogous to the well-known theorem of Gage and Hamilton for the curvature flow of plane curves. We conclude the paper with the discussion of an example of weak Lipschitz evolution starting from the square in the plane.
2010
String Theory; Lorentzian minimal surfaces; geometric evolutions
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/345588
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact