Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
CATALOGO DEI PRODOTTI DELLA RICERCA
A key factor for the efficiency in nanostructured devices is the charge transport. Despite considerable attention to this subject, the precise nature of transport processes in these systems has remained unresolved. To understand the microscopic aspects of carrier dynamics, we suggest a method for the calculation of correlation functions. They can be expressed as the Fourier transform of a kernel containing the frequency-dependent conductivity (). We present results for the velocity correlation functions <v(o)v(t)>, the mean square deviation of position R2=<[R(t)-R(o)]2> and the diffusion coefficient D=(R2/t) in materials, like TiO2, ZnO, Si, for which a Drude-Lorentz description or its generalizations applies with a good agreement with experiments. We find that D=0, indicating absence of diffusion at long times, except in the Drude case (o=0). For small times t/<1, however, diffusion can occur even when o 0, within a limited region of size increasing with the value of o. The quantum mechanical extension of this method allows applications for the nanodiffusion in nanostructured, porous and cellular materials, as for biological, medical and nanopiezotronic devices.
A powerful method to describe transport properties of nano and bio materials
A key factor for the efficiency in nanostructured devices is the charge transport. Despite considerable attention to this subject, the precise nature of transport processes in these systems has remained unresolved. To understand the microscopic aspects of carrier dynamics, we suggest a method for the calculation of correlation functions. They can be expressed as the Fourier transform of a kernel containing the frequency-dependent conductivity (). We present results for the velocity correlation functions , the mean square deviation of position R2=<[R(t)-R(o)]2> and the diffusion coefficient D=(R2/t) in materials, like TiO2, ZnO, Si, for which a Drude-Lorentz description or its generalizations applies with a good agreement with experiments. We find that D=0, indicating absence of diffusion at long times, except in the Drude case (o=0). For small times t/<1, however, diffusion can occur even when o 0, within a limited region of size increasing with the value of o. The quantum mechanical extension of this method allows applications for the nanodiffusion in nanostructured, porous and cellular materials, as for biological, medical and nanopiezotronic devices.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/340820
Citazioni
ND
ND
ND
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.