This article summarises the pros and cons of different algorithms developed for estimating breath-by-breath (B-by-B) alveolar O(2) transfer (VO 2A) in humans. VO 2A is the difference between O(2) uptake at the mouth and changes in alveolar O(2) stores (∆ VO(2s)), which for any given breath, are equal to the alveolar volume change at constant FAO2/FAiO2 ∆VAi plus the O(2) alveolar fraction change at constant volume [V Ai-1(F Ai - F Ai-1) O2, where V (Ai-1) is the alveolar volume at the beginning of a breath. Therefore, VO 2A can be determined B-by-B provided that V (Ai-1) is: (a) set equal to the subject's functional residual capacity (algorithm of Auchincloss, A) or to zero; (b) measured (optoelectronic plethysmography, OEP); (c) selected according to a procedure that minimises B-by-B variability (algorithm of Busso and Robbins, BR). Alternatively, the respiratory cycle can be redefined as the time between equal FO(2) in two subsequent breaths (algorithm of Grønlund, G), making any assumption of V (Ai-1) unnecessary. All the above methods allow an unbiased estimate of VO2 at steady state, albeit with different precision. Yet the algorithms "per se" affect the parameters describing the B-by-B kinetics during exercise transitions. Among these approaches, BR and G, by increasing the signal-to-noise ratio of the measurements, reduce the number of exercise repetitions necessary to study VO2 kinetics, compared to A approach. OEP and G (though technically challenging and conceptually still debated), thanks to their ability to track ∆VO(2s) changes during the early phase of exercise transitions, appear rather promising for investigating B-by-B gas exchange.

Algorithms, modelling and V̇O2kinetics

CAPELLI, Carlo
;
POGLIAGHI, Silvia
2011-01-01

Abstract

This article summarises the pros and cons of different algorithms developed for estimating breath-by-breath (B-by-B) alveolar O(2) transfer (VO 2A) in humans. VO 2A is the difference between O(2) uptake at the mouth and changes in alveolar O(2) stores (∆ VO(2s)), which for any given breath, are equal to the alveolar volume change at constant FAO2/FAiO2 ∆VAi plus the O(2) alveolar fraction change at constant volume [V Ai-1(F Ai - F Ai-1) O2, where V (Ai-1) is the alveolar volume at the beginning of a breath. Therefore, VO 2A can be determined B-by-B provided that V (Ai-1) is: (a) set equal to the subject's functional residual capacity (algorithm of Auchincloss, A) or to zero; (b) measured (optoelectronic plethysmography, OEP); (c) selected according to a procedure that minimises B-by-B variability (algorithm of Busso and Robbins, BR). Alternatively, the respiratory cycle can be redefined as the time between equal FO(2) in two subsequent breaths (algorithm of Grønlund, G), making any assumption of V (Ai-1) unnecessary. All the above methods allow an unbiased estimate of VO2 at steady state, albeit with different precision. Yet the algorithms "per se" affect the parameters describing the B-by-B kinetics during exercise transitions. Among these approaches, BR and G, by increasing the signal-to-noise ratio of the measurements, reduce the number of exercise repetitions necessary to study VO2 kinetics, compared to A approach. OEP and G (though technically challenging and conceptually still debated), thanks to their ability to track ∆VO(2s) changes during the early phase of exercise transitions, appear rather promising for investigating B-by-B gas exchange.
2011
breath-by-breath gas exchange; lung gas stores variation; lung volume variation; O2 uptake kinetics
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/340223
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 1
social impact