PURPOSE: Virtual Touch tissue quantification is an implementation of ultrasound (US) Acoustic Radiation Force Impulse (ARFI) imaging that provides numerical measurements (wave-velocity values) of tissue stiffness. The aim of this study was to define the normal values of shear-wave speed for the healthy liver, gallbladder, pancreas, spleen and kidneys. MATERIALS AND METHODS: Thirty-five young healthy volunteers underwent Virtual Touch tissue quantification after having signed an informed consent form. All upper abdominal organs were examined by two independent operators. A phantom fluid model was also evaluated. All mean wave-velocity values were analysed and compared. RESULTS: One hundred and forty measurements of liver, pancreas, spleen and kidneys, and 70 measurements of the gallbladder lumen were performed. Twenty measurements on the phantom were also performed. Comparing all measurements separately made by each operator in different parts of the organs, no statistically significant differences were observed. A "XXXX/0" value was always obtained from all measurements performed on the gallbladder lumen and on the phantom fluid model. Liver, pancreas, spleen and kidney mean values were 1.59 m/s, 1.40 m/s, 2.44 m/s and 2.24 m/s, respectively. CONCLUSIONS: Virtual Touch tissue quantification is a new, promising implementation of the US ARFI technique, which provides numerical measurements of tissue stiffness. The mean shear-wave speed is lower in the pancreatic parenchyma than in the liver and kidney, whereas the spleen is characterised by the highest mean value. In simple fluids such as water, the value identified by the system with "XXXX" or 0, is always measured

Acoustic Radiation Force Impulse (ARFI) technique in ultrasound with Virtual Touch tissue quantification of the upper abdomen

D'ONOFRIO, Mirko;POZZI MUCELLI, Roberto
2010-01-01

Abstract

PURPOSE: Virtual Touch tissue quantification is an implementation of ultrasound (US) Acoustic Radiation Force Impulse (ARFI) imaging that provides numerical measurements (wave-velocity values) of tissue stiffness. The aim of this study was to define the normal values of shear-wave speed for the healthy liver, gallbladder, pancreas, spleen and kidneys. MATERIALS AND METHODS: Thirty-five young healthy volunteers underwent Virtual Touch tissue quantification after having signed an informed consent form. All upper abdominal organs were examined by two independent operators. A phantom fluid model was also evaluated. All mean wave-velocity values were analysed and compared. RESULTS: One hundred and forty measurements of liver, pancreas, spleen and kidneys, and 70 measurements of the gallbladder lumen were performed. Twenty measurements on the phantom were also performed. Comparing all measurements separately made by each operator in different parts of the organs, no statistically significant differences were observed. A "XXXX/0" value was always obtained from all measurements performed on the gallbladder lumen and on the phantom fluid model. Liver, pancreas, spleen and kidney mean values were 1.59 m/s, 1.40 m/s, 2.44 m/s and 2.24 m/s, respectively. CONCLUSIONS: Virtual Touch tissue quantification is a new, promising implementation of the US ARFI technique, which provides numerical measurements of tissue stiffness. The mean shear-wave speed is lower in the pancreatic parenchyma than in the liver and kidney, whereas the spleen is characterised by the highest mean value. In simple fluids such as water, the value identified by the system with "XXXX" or 0, is always measured
ARFI ultrasound imaging; Virtual Touch tissue quantification; Healthy abdominal organs
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/339497
Citazioni
  • ???jsp.display-item.citation.pmc??? 47
  • Scopus 151
  • ???jsp.display-item.citation.isi??? 136
social impact