Starting from the Amann-Conley-Zehnder finite reduction framework in the non-compact Viterbo’s version, we discuss the existence of global generating function with a finite number of auxiliary parameters describing the two-points Characteristic Relation related to the geodesic problem in the Hamiltonian formalism. This applies both to Analytical Mechanics and to General Relativity - we construct a global object generalizing the World Function introduced by Synge, which is well-defined only locally. Whenever the auxiliary parameters can be fully removed, Synge’s World Function is restored.

Global world functions

MARIGONDA, Antonio
2004-01-01

Abstract

Starting from the Amann-Conley-Zehnder finite reduction framework in the non-compact Viterbo’s version, we discuss the existence of global generating function with a finite number of auxiliary parameters describing the two-points Characteristic Relation related to the geodesic problem in the Hamiltonian formalism. This applies both to Analytical Mechanics and to General Relativity - we construct a global object generalizing the World Function introduced by Synge, which is well-defined only locally. Whenever the auxiliary parameters can be fully removed, Synge’s World Function is restored.
2004
Geodesics; General Relativity; Generating Functions
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/336343
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact