Rhizobia symbionts elicit root nodule formation in leguminous plants. Nodule development requires local accumulation of auxin. Both plants and rhizobia synthesise auxin. We have addressed the effects of bacterial auxin (IAA) on nodulation by using Sinorhizobium meliloti and Rhizobium leguminosarum bacteria genetically engineered for increased auxin synthesis. IAA-overproducing S. meliloti increased nodulation in Medicago species, whilst the increased auxin synthesis of R. leguminosarum had no effect on nodulation in Phaseolus vulgaris, a legume bearing determinate nodules. Indeterminate legumes (Medicago species) bearing IAAoverproducing nodules showed an enhanced lateral root development, a process known to be regulated by both IAA and nitric oxide (NO). Higher NO levels were detected in indeterminate nodules of Medicago plants formed by the IAA-overproducing rhizobia. The specific NO scavenger cPTIO markedly reduced nodulation induced by wild type and IAA-overproducing strains. The data hereby presented demonstrate that auxin synthesised by rhizobia and nitric oxide positively affect indeterminate nodule formation and, together with the observation of increased expression of an auxin efflux carrier in roots bearing nodules with higher IAA and NO content, support a model of nodule formation that involves auxin transport regulation and NO synthesis.

Auxin and nitric oxide control indeterminate nodule formation

PII, Youry;CRIMI, Massimo;CREMONESE, Giorgia;SPENA, Angelo;PANDOLFINI, Tiziana
2007

Abstract

Rhizobia symbionts elicit root nodule formation in leguminous plants. Nodule development requires local accumulation of auxin. Both plants and rhizobia synthesise auxin. We have addressed the effects of bacterial auxin (IAA) on nodulation by using Sinorhizobium meliloti and Rhizobium leguminosarum bacteria genetically engineered for increased auxin synthesis. IAA-overproducing S. meliloti increased nodulation in Medicago species, whilst the increased auxin synthesis of R. leguminosarum had no effect on nodulation in Phaseolus vulgaris, a legume bearing determinate nodules. Indeterminate legumes (Medicago species) bearing IAAoverproducing nodules showed an enhanced lateral root development, a process known to be regulated by both IAA and nitric oxide (NO). Higher NO levels were detected in indeterminate nodules of Medicago plants formed by the IAA-overproducing rhizobia. The specific NO scavenger cPTIO markedly reduced nodulation induced by wild type and IAA-overproducing strains. The data hereby presented demonstrate that auxin synthesised by rhizobia and nitric oxide positively affect indeterminate nodule formation and, together with the observation of increased expression of an auxin efflux carrier in roots bearing nodules with higher IAA and NO content, support a model of nodule formation that involves auxin transport regulation and NO synthesis.
Rhizobia; symbiosis; legumes; auxin; nitric oxide
File in questo prodotto:
File Dimensione Formato  
Auxin and nitric oxide control.pdf

accesso aperto

Tipologia: Altro materiale allegato
Licenza: Dominio pubblico
Dimensione 733.52 kB
Formato Adobe PDF
733.52 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/334891
Citazioni
  • ???jsp.display-item.citation.pmc??? 45
  • Scopus 130
  • ???jsp.display-item.citation.isi??? 131
social impact