In this paper we compare Krylov subspace methods with Faber series expansion for approximating the matrix exponential operator on large, sparse, non-symmetric matrices. We consider in particular the case of Chebyshev series, corresponding to an initial estimate of the spectrum of the matrix by a suitable ellipse. Experimental results upon matrices with large size, arising from space discretization of 2D advection-diffusion problems, demonstrate that the Chebyshev method can be an effective alternative to Krylov techniques.
Efficient approximation of the exponential operator for discrete 2D advection-diffusion problems
CALIARI, Marco;
2003-01-01
Abstract
In this paper we compare Krylov subspace methods with Faber series expansion for approximating the matrix exponential operator on large, sparse, non-symmetric matrices. We consider in particular the case of Chebyshev series, corresponding to an initial estimate of the spectrum of the matrix by a suitable ellipse. Experimental results upon matrices with large size, arising from space discretization of 2D advection-diffusion problems, demonstrate that the Chebyshev method can be an effective alternative to Krylov techniques.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
preBCV03.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Dominio pubblico
Dimensione
427.35 kB
Formato
Adobe PDF
|
427.35 kB | Adobe PDF | Visualizza/Apri |
BCV03.pdf
non disponibili
Tipologia:
Versione dell'editore
Licenza:
Accesso ristretto
Dimensione
516.3 kB
Formato
Adobe PDF
|
516.3 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.