Given a ring R, two classes A and B of R-modules are said to form a cotorsion pair (A, beta) in Mod R if A = Ker Ext(R)(1)(-, beta) and beta = KerExt(R)(1)(A, -). We investigate relative homological dimensions in cotorsion pairs. This can be applied to study the big and the little finitistic dimension of R. We show that Findim R < infinity if and only if the following dimensions are finite for some cotorsion pair (A, beta) in Mod R: the relative projective dimension of A with respect to itself, and the A-resolution dimension of the category P of all R-modules of finite projective dimension. Moreover, we obtain an analogous result for findim R, and we characterize when Findim R = findim R.

Homological dimensions in cotorsion pairs

ANGELERI, LIDIA;
2009-01-01

Abstract

Given a ring R, two classes A and B of R-modules are said to form a cotorsion pair (A, beta) in Mod R if A = Ker Ext(R)(1)(-, beta) and beta = KerExt(R)(1)(A, -). We investigate relative homological dimensions in cotorsion pairs. This can be applied to study the big and the little finitistic dimension of R. We show that Findim R < infinity if and only if the following dimensions are finite for some cotorsion pair (A, beta) in Mod R: the relative projective dimension of A with respect to itself, and the A-resolution dimension of the category P of all R-modules of finite projective dimension. Moreover, we obtain an analogous result for findim R, and we characterize when Findim R = findim R.
2009
finitistic dimension; tilting; cotorsion pair
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/327488
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact