We develop a structure theory for two classes of infinite dimensional modules over tame hereditary algebras: the Baer modules, and the Mittag–Leffler ones. We show that a module M is Baer iff M is p–filtered where p is the preprojective component of the tame hereditary algebra R. We apply this to prove that the universal localization of a Baer module is projective in case we localize with respect to a complete tube. Using infinite dimensional tilting theory we then obtain a structure result showing that Baer modules are more complex then the (infinite dimensional) preprojective modules. In the final section, we give a complete classification of the Mittag–Leffler modules.

Baer and Mittag-Leffler modules over tame hereditary artin algebras

ANGELERI, LIDIA;
2010-01-01

Abstract

We develop a structure theory for two classes of infinite dimensional modules over tame hereditary algebras: the Baer modules, and the Mittag–Leffler ones. We show that a module M is Baer iff M is p–filtered where p is the preprojective component of the tame hereditary algebra R. We apply this to prove that the universal localization of a Baer module is projective in case we localize with respect to a complete tube. Using infinite dimensional tilting theory we then obtain a structure result showing that Baer modules are more complex then the (infinite dimensional) preprojective modules. In the final section, we give a complete classification of the Mittag–Leffler modules.
2010
finite dimensional algebras; tilting; modules of infinite length
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/327485
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact