The paper aims at improving the support of medical researchers in the context of in-vivo cancer imaging. Morphological and functional parameters obtained by dynamic contrast-enhanced MRI (DCE-MRI) techniques are analyzed, which aim at investigating the development of tumor microvessels. The main contribution consists in proposing a machine learning methodology to segment automatically these MRI data, by isolating tumor areas with different meaning, in a histological sense. METHODS: The proposed approach is based on a three-step procedure: i) robust feature extraction from raw time-intensity curves, ii) voxel segmentation, and iii) voxel classification based on a learning-by-example approach. In the first step, few robust features that compactly represent the response of the tissue to the DCE-MRI analysis are computed. The second step provides a segmentation based on the mean shift (MS) paradigm, which has recently shown to be robust and useful for different and heterogeneous clustering tasks. Finally, in the third step, a support vector machine (SVM) is trained to classify voxels according to the labels obtained by the clustering phase (i.e., each class corresponds to a cluster). Indeed, the SVM is able to classify new unseen subjects with the same kind of tumor. RESULTS: Experiments on different subjects affected by the same kind of tumor evidence that the extracted regions by both the MS clustering and the SVM classifier exhibit a precise medical meaning, as carefully validated by the medical researchers. Moreover, our approach is more stable and robust than methods based on quantification of DCE-MRI data by means of pharmacokinetic models. CONCLUSIONS: The proposed method allows to analyze the DCE-MRI data more precisely and faster than previous automated or manual approaches.

DCE-MRI Data Analysis for Cancer Area Classification

CASTELLANI, Umberto;CRISTANI, Marco;DADUCCI, Alessandro;FARACE, Paolo;MARZOLA, Pasquina;MURINO, Vittorio;SBARBATI, Andrea
2009-01-01

Abstract

The paper aims at improving the support of medical researchers in the context of in-vivo cancer imaging. Morphological and functional parameters obtained by dynamic contrast-enhanced MRI (DCE-MRI) techniques are analyzed, which aim at investigating the development of tumor microvessels. The main contribution consists in proposing a machine learning methodology to segment automatically these MRI data, by isolating tumor areas with different meaning, in a histological sense. METHODS: The proposed approach is based on a three-step procedure: i) robust feature extraction from raw time-intensity curves, ii) voxel segmentation, and iii) voxel classification based on a learning-by-example approach. In the first step, few robust features that compactly represent the response of the tissue to the DCE-MRI analysis are computed. The second step provides a segmentation based on the mean shift (MS) paradigm, which has recently shown to be robust and useful for different and heterogeneous clustering tasks. Finally, in the third step, a support vector machine (SVM) is trained to classify voxels according to the labels obtained by the clustering phase (i.e., each class corresponds to a cluster). Indeed, the SVM is able to classify new unseen subjects with the same kind of tumor. RESULTS: Experiments on different subjects affected by the same kind of tumor evidence that the extracted regions by both the MS clustering and the SVM classifier exhibit a precise medical meaning, as carefully validated by the medical researchers. Moreover, our approach is more stable and robust than methods based on quantification of DCE-MRI data by means of pharmacokinetic models. CONCLUSIONS: The proposed method allows to analyze the DCE-MRI data more precisely and faster than previous automated or manual approaches.
2009
Segmentation; Classificatio; Magnetic Resonance Imaging
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/326816
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 7
social impact