Lymphocyte recruitment into the brain is a critical event in the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis. We developed a novel intravital microscopy model to directly analyze through the skull the interactions between lymphocytes and the endothelium in cerebral venules of mice. No adhesive interactions were observed between lymphocytes and the nonactivated endothelium in the cerebral microcirculation. When brain venules were activated by pretreating mice with TNF-alpha or LPS, proteolipid protein 139-151 autoreactive T lymphocytes rolled and arrested; notably, only a few peripheral lymph node cells rolled and firmly adhered. Abs anti-P-selectin glycoprotein ligand-1 and anti-E- and P-selectin blocked tethering and rolling of autoreactive lymphocytes, suggesting that P-selectin glycoprotein ligand-1/endothelial selectins are critical In the recruitment of lymphocytes in inflamed brain venules. E- and P-selectin were expressed on cerebral vessels upon in vivo activation and had a patchy distribution during the preclinical phase of active and passive experimental autoimmune encephalomyelitis. LFA-1/ICAM-1 and alpha(4) integrins/VCAM-1 supported rolling, but were not relevant to rolling velocity. Firm arrest was mainly mediated by LFA-1 and ICAM-1. Pretreatment of autoreactive lymphocytes with pertussis toxin blocked integrin-dependent arrest, implicating a requirement for G(i) protein-dependent signaling in vessels from nonlymphoid districts. In conclusion, our data unveils the molecular mechanisms controlling the recruitment of autoreactive lymphocytes in inflamed cerebral vessels and suggest new insights into the pathogenesis of autoimmune inflammatory diseases of the CNS.

Molecular mechanisms involved in lymphocyte recruitment in inflamed brain microvessels: critical roles for P-selectin glycoprotein ligand-1 and heterotrimeric G(i)-linked receptors.

ROSSI, Barbara;LAUDANNA, Carlo;GIAGULLI, Cinzia;CONSTANTIN, Gabriela
2002-01-01

Abstract

Lymphocyte recruitment into the brain is a critical event in the pathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis. We developed a novel intravital microscopy model to directly analyze through the skull the interactions between lymphocytes and the endothelium in cerebral venules of mice. No adhesive interactions were observed between lymphocytes and the nonactivated endothelium in the cerebral microcirculation. When brain venules were activated by pretreating mice with TNF-alpha or LPS, proteolipid protein 139-151 autoreactive T lymphocytes rolled and arrested; notably, only a few peripheral lymph node cells rolled and firmly adhered. Abs anti-P-selectin glycoprotein ligand-1 and anti-E- and P-selectin blocked tethering and rolling of autoreactive lymphocytes, suggesting that P-selectin glycoprotein ligand-1/endothelial selectins are critical In the recruitment of lymphocytes in inflamed brain venules. E- and P-selectin were expressed on cerebral vessels upon in vivo activation and had a patchy distribution during the preclinical phase of active and passive experimental autoimmune encephalomyelitis. LFA-1/ICAM-1 and alpha(4) integrins/VCAM-1 supported rolling, but were not relevant to rolling velocity. Firm arrest was mainly mediated by LFA-1 and ICAM-1. Pretreatment of autoreactive lymphocytes with pertussis toxin blocked integrin-dependent arrest, implicating a requirement for G(i) protein-dependent signaling in vessels from nonlymphoid districts. In conclusion, our data unveils the molecular mechanisms controlling the recruitment of autoreactive lymphocytes in inflamed cerebral vessels and suggest new insights into the pathogenesis of autoimmune inflammatory diseases of the CNS.
2002
EXPERIMENTAL AUTOIMMUNE ENCEPHALOMYELITIS; CENTRAL-NERVOUS-SYSTEM; BLOCKING MONOCLONAL-ANTIBODY; TYROSINE KINASE INHIBITOR; IN-VIVO; ALLERGIC ENCEPHALOMYELITIS; LEUKOCYTE RECRUITMENT; T-HELPER-2 CELLS; ALPHA-4 INTEGRIN; ADHESION
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/32672
Citazioni
  • ???jsp.display-item.citation.pmc??? 56
  • Scopus 216
  • ???jsp.display-item.citation.isi??? 195
social impact