In this paper, we are concerned with the numerical solution of the time-dependent Gross-Pitaevskii Equation (GPE) involving a quasi-harmonic potential. Primarily, we consider discretisations that are based on spectral methods in space and higher-order exponential operator splitting methods in time. The resulting methods are favourable in view of accuracy and efficiency; moreover, geometric properties of the equation such as particle number and energy conservation are well captured. Regarding the spatial discretisation of the GPE, we consider two approaches. In the unbounded domain, we employ a spectral decomposition of the solution into Hermite basis functions: on the other hand. restricting the equation to a sufficiently large bounded domain, Fourier techniques are applicable. For the time integration of the GPE, we study various exponential operator splitting methods of convergence orders two, four, and six. Our main objective is to provide accuracy and efficiency comparisons of exponential operator splitting Fourier and Hermite pseudospectral methods for the time evolution of the GPE. Furthermore, we illustrate the effectiveness of higher-order time-splitting methods compared to standard integrators in a long-term integration.

High-order time-splitting Hermite and Fourier spectral methods

CALIARI, Marco;
2009-01-01

Abstract

In this paper, we are concerned with the numerical solution of the time-dependent Gross-Pitaevskii Equation (GPE) involving a quasi-harmonic potential. Primarily, we consider discretisations that are based on spectral methods in space and higher-order exponential operator splitting methods in time. The resulting methods are favourable in view of accuracy and efficiency; moreover, geometric properties of the equation such as particle number and energy conservation are well captured. Regarding the spatial discretisation of the GPE, we consider two approaches. In the unbounded domain, we employ a spectral decomposition of the solution into Hermite basis functions: on the other hand. restricting the equation to a sufficiently large bounded domain, Fourier techniques are applicable. For the time integration of the GPE, we study various exponential operator splitting methods of convergence orders two, four, and six. Our main objective is to provide accuracy and efficiency comparisons of exponential operator splitting Fourier and Hermite pseudospectral methods for the time evolution of the GPE. Furthermore, we illustrate the effectiveness of higher-order time-splitting methods compared to standard integrators in a long-term integration.
2009
time-splitting; Fourier; Hermite; Gross-Pitaevskii
File in questo prodotto:
File Dimensione Formato  
preTCN09.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Dominio pubblico
Dimensione 588.25 kB
Formato Adobe PDF
588.25 kB Adobe PDF Visualizza/Apri
TCN09_original.pdf

non disponibili

Tipologia: Versione dell'editore
Licenza: Accesso ristretto
Dimensione 723 kB
Formato Adobe PDF
723 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/325477
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 72
  • ???jsp.display-item.citation.isi??? 70
social impact