A new method for the determination of illicit and abused drugs in blood by capillary zone electrophoresis-electrospray ionization-time-of-flight mass spectrometry is proposed, in view of its application in clinical and forensic toxicology. The analytes (methamphetamine, methylenedioxyamphetamine, methylenedioxyethylamphetamine, methylenedioxymethamphetamine, methadone, cocaine, morphine, codeine, 6-acethylmorphine, benzoylecgonine) were separated with capillary zone electrophoresis by applying 15 kV within 25 min, in an uncoated fused-silica capillary (75 μm × 100 cm) using a 25mM ammonium formate electrolyte solution (pH 9.5). The capillary electropherograph was coupled to time-of-flight mass spectrometry through an orthogonal electrospray ionization source, with a coaxial sheath liquid interface. The sheath liquid was composed of isopropanol-water (1:1 v/v) containing 0.5% formic acid delivered at 4 μL/min. Forensic drugs were identified by exact mass determination (mass accuracy typically ≤5 ppm) and by matching of the isotopic pattern. Under optimized conditions, linearity was assessed in the range 10-2000 ng/mL, with correlation coefficients between 0.9744 and 0.9982 for all the analytes. LODs were in the range of 2-10 ng/mL (S/N ≥Z3) and LOQs of 10-30 ng/mL. The CVs (tested at 40 and 800 ng/mL in biological matrix) were below 2.97% for migration times and below 14.61% for peak area ratios (analyte/internal standard). Blood samples were extracted by using a liquid-liquid extraction procedure and injected under field-amplified sample stacking conditions. The method was successfully applied to real cases.

Capillary Zone Electrophoresis (CZE) coupled to time-of-flight mass spectrometry (TOF-MS) applied to the analysis of illicit and controlled drugs in blood

GOTTARDO, Rossella;POLETTINI, ALDO ELIANO;SORIO, DANIELA;PASCALI, Jennifer;BORTOLOTTI, Federica;LIOTTA, Eloisa;TAGLIARO, Franco
2008-01-01

Abstract

A new method for the determination of illicit and abused drugs in blood by capillary zone electrophoresis-electrospray ionization-time-of-flight mass spectrometry is proposed, in view of its application in clinical and forensic toxicology. The analytes (methamphetamine, methylenedioxyamphetamine, methylenedioxyethylamphetamine, methylenedioxymethamphetamine, methadone, cocaine, morphine, codeine, 6-acethylmorphine, benzoylecgonine) were separated with capillary zone electrophoresis by applying 15 kV within 25 min, in an uncoated fused-silica capillary (75 μm × 100 cm) using a 25mM ammonium formate electrolyte solution (pH 9.5). The capillary electropherograph was coupled to time-of-flight mass spectrometry through an orthogonal electrospray ionization source, with a coaxial sheath liquid interface. The sheath liquid was composed of isopropanol-water (1:1 v/v) containing 0.5% formic acid delivered at 4 μL/min. Forensic drugs were identified by exact mass determination (mass accuracy typically ≤5 ppm) and by matching of the isotopic pattern. Under optimized conditions, linearity was assessed in the range 10-2000 ng/mL, with correlation coefficients between 0.9744 and 0.9982 for all the analytes. LODs were in the range of 2-10 ng/mL (S/N ≥Z3) and LOQs of 10-30 ng/mL. The CVs (tested at 40 and 800 ng/mL in biological matrix) were below 2.97% for migration times and below 14.61% for peak area ratios (analyte/internal standard). Blood samples were extracted by using a liquid-liquid extraction procedure and injected under field-amplified sample stacking conditions. The method was successfully applied to real cases.
2008
Blood analysis; Capillary electrophoresis; Drugs of abuse; Time-of-flight mass spectrometry
File in questo prodotto:
File Dimensione Formato  
CE_TOF_electrophoresis.pdf

solo utenti autorizzati

Descrizione: Lavoro in extenso
Tipologia: Documento in Post-print
Licenza: Accesso ristretto
Dimensione 220.73 kB
Formato Adobe PDF
220.73 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/324326
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 35
social impact