Generalizing a classical result of Smirnov for topological spaces, B. Banaschewski proved that there is an order isomorphism between compactifications of a frame (locale) and the strong inclusions on that frame. Considering, more generally, strong inclusions on distributive pseudocomplemented lattices allows new aspects of locale (and space) compactifications to emerge. Given a subpseudocomplemented lattice P of a frame L and a strong inclusion on P, the 'round ideal completion' of P is a compact regular frame enjoying a unique factorization property for certain continuous mappings from L into compact regular locales. Every compactification can be obtained in this way, from a subpseudocomplemented lattice P and a strong inclusion on P, both inductively defined. It follows that every compactification satisfies (is characterized by) a certain universal property. This property reduces to the usual one of Stone-Čech compactification when the chosen subpseudocomplemented lattice P of L and strong inclusion on P are sufficiently large. One need not take the whole frame (Banaschewski-Mulvey's construction of Stone-Čech compactification). An inductively constructed subpseudocomplemented lattice K of L suffices. Remarkably, it suffices for all compactifications: every compactification of L can be obtained as the frame of round ideals over K for an inductively defined strong inclusion on K. Alexandroff compactification is also re-obtained in this vein, as the completion of the least inductively defined subpseudocomplemented lattice extending a base of L, endowed with the least (inductively defined) strong inclusion containing the way-below relation.

Remarks on the Stone-Čech and Alexandroff compactifications of locales.

CURI, Giovanni
2008-01-01

Abstract

Generalizing a classical result of Smirnov for topological spaces, B. Banaschewski proved that there is an order isomorphism between compactifications of a frame (locale) and the strong inclusions on that frame. Considering, more generally, strong inclusions on distributive pseudocomplemented lattices allows new aspects of locale (and space) compactifications to emerge. Given a subpseudocomplemented lattice P of a frame L and a strong inclusion on P, the 'round ideal completion' of P is a compact regular frame enjoying a unique factorization property for certain continuous mappings from L into compact regular locales. Every compactification can be obtained in this way, from a subpseudocomplemented lattice P and a strong inclusion on P, both inductively defined. It follows that every compactification satisfies (is characterized by) a certain universal property. This property reduces to the usual one of Stone-Čech compactification when the chosen subpseudocomplemented lattice P of L and strong inclusion on P are sufficiently large. One need not take the whole frame (Banaschewski-Mulvey's construction of Stone-Čech compactification). An inductively constructed subpseudocomplemented lattice K of L suffices. Remarkably, it suffices for all compactifications: every compactification of L can be obtained as the frame of round ideals over K for an inductively defined strong inclusion on K. Alexandroff compactification is also re-obtained in this vein, as the completion of the least inductively defined subpseudocomplemented lattice extending a base of L, endowed with the least (inductively defined) strong inclusion containing the way-below relation.
2008
compactifications; frames; locales; inductive definitions; toposes; constructive set theories.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/324099
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact