A review of our recent and ongoing extensive high-pressure synchrotron X-ray diffraction and high-pressure optical spectroscopy studies of nanocrystalline composites is presented. These heterophased, nano-architectured composites consist of amorphous matrixes with dispersed nanocrystals or quantum dots. We show how besides compositional variations, additional tuning of these glass-derived nanocomposites can be done by exploiting elevated pressure. We examine stability and pressure-driven phase transitions occurring in nanocrystals as well as structural changes occurring in the glass matrix. Finally, we discuss the influence of the glass matrix of a composite on the structural transformations occurring in the embedded nanocrystals.
High-Pressure Structural Integrity and Structural Transformations of Glass-Derived Nanocomposites: a Review
MARIOTTO, Gino;
2008-01-01
Abstract
A review of our recent and ongoing extensive high-pressure synchrotron X-ray diffraction and high-pressure optical spectroscopy studies of nanocrystalline composites is presented. These heterophased, nano-architectured composites consist of amorphous matrixes with dispersed nanocrystals or quantum dots. We show how besides compositional variations, additional tuning of these glass-derived nanocomposites can be done by exploiting elevated pressure. We examine stability and pressure-driven phase transitions occurring in nanocrystals as well as structural changes occurring in the glass matrix. Finally, we discuss the influence of the glass matrix of a composite on the structural transformations occurring in the embedded nanocrystals.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.