A class of damped wave equations with superlinear source term is considered. It is shown that every global solution is uniformly bounded in the natural phase space. Global existence of solutions with initial data in the potential well is obtained. Finally, not only finite time blow up for solutions starting in the unstable set is proved, but also high energy initial data for which the solution blows up are constructed.

Global solutions and finite time blow up for damped semilinear wave equations

SQUASSINA, Marco
2006-01-01

Abstract

A class of damped wave equations with superlinear source term is considered. It is shown that every global solution is uniformly bounded in the natural phase space. Global existence of solutions with initial data in the potential well is obtained. Finally, not only finite time blow up for solutions starting in the unstable set is proved, but also high energy initial data for which the solution blows up are constructed.
2006
Damped wave equation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/32128
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact