Electroencephalography combined with functional magnetic resonance imaging (EEG-fMRI) may be used to identify blood oxygenation level dependent (BOLD) signal changes associated with physiological and pathological EEG event. In this study we used EEG-fMRI to determine the possible correlation between topographical movement-related EEG changes in brain oscillatory activity recorded from EEG electrodes over the scalp and fMRI-BOLD cortical responses in motor areas during finger movement. Thirty-two channels of EEG were recorded in 9 subjects during eyes-open condition inside a 1.5 T magnetic resonance (MR) scanner using a MR-compatible EEG recording system. Off-line MRI artifact subtraction software was applied to obtain continuous EEG data during fMRI acquisition. For EEG data analysis we used the event-related-synchronization/desynchronization (ERS/ERD) approach to investigate where movement-related decreases in alpha and beta power are located. For image statistical analysis we used a general linear model (GLM) approach. There was a significant correlation between the positive-negative ratio of BOLD signal peaks and ERD values in the electrodes over the region of activation. We conclude that combined EEG-fMRI may be used to investigate movement-related oscillations of the human brain inside an MRI scanner and the movement-related changes in the EMG or EEG signals are useful to identify the brain activation sources responsible for BOLD-signal changes.

EEG and fMRI coregistration to investigate the cortical oscillatory activities during finger movement.

STORTI, Silvia Francesca;POZZI MUCELLI, Roberto;FIASCHI, Antonio;
2008-01-01

Abstract

Electroencephalography combined with functional magnetic resonance imaging (EEG-fMRI) may be used to identify blood oxygenation level dependent (BOLD) signal changes associated with physiological and pathological EEG event. In this study we used EEG-fMRI to determine the possible correlation between topographical movement-related EEG changes in brain oscillatory activity recorded from EEG electrodes over the scalp and fMRI-BOLD cortical responses in motor areas during finger movement. Thirty-two channels of EEG were recorded in 9 subjects during eyes-open condition inside a 1.5 T magnetic resonance (MR) scanner using a MR-compatible EEG recording system. Off-line MRI artifact subtraction software was applied to obtain continuous EEG data during fMRI acquisition. For EEG data analysis we used the event-related-synchronization/desynchronization (ERS/ERD) approach to investigate where movement-related decreases in alpha and beta power are located. For image statistical analysis we used a general linear model (GLM) approach. There was a significant correlation between the positive-negative ratio of BOLD signal peaks and ERD values in the electrodes over the region of activation. We conclude that combined EEG-fMRI may be used to investigate movement-related oscillations of the human brain inside an MRI scanner and the movement-related changes in the EMG or EEG signals are useful to identify the brain activation sources responsible for BOLD-signal changes.
2008
EEG; BOLD; ERD; Alpha power; Beta power
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/319981
Citazioni
  • ???jsp.display-item.citation.pmc??? 32
  • Scopus 68
  • ???jsp.display-item.citation.isi??? 65
social impact