PURPOSE: To verify whether in patients with partial epilepsy and routine electroenecephalogram (EEG) showing focal interictal slow-wave discharges without spikes combined EEG-functional magnetic resonance imaging (fMRI) would localize the corresponding epileptogenic focus, thus providing reliable information on the epileptic source. METHODS: Eight patients with partial epileptic seizures whose routine scalp EEG recordings on presentation showed focal interictal slow-wave activity underwent EEG-fMRI. EEG data were continuously recorded for 24 min (four concatenated sessions) from 18 scalp electrodes, while fMRI scans were simultaneously acquired with a 1.5-Tesla magnetic resonance imaging (MRI) scanner. After recording sessions and MRI artefact removal, EEG data were analyzed offline. We compared blood oxygen level-dependent (BOLD) signal changes on fMRI with EEG recordings obtained at rest and during activation (with and without focal interictal slow-wave discharges). RESULTS: In all patients, when the EEG tracing showed the onset of focal slow-wave discharges on a few lateralized electrodes, BOLD-fMRI activation in the corresponding brain area significantly increased. We detected significant concordance between focal EEG interictal slow-wave discharges and focal BOLD activation on fMRI. In patients with lesional epilepsy, the epileptogenic area corresponded to the sites of increased focal BOLD signal. CONCLUSIONS: Even in patients with partial epilepsy whose standard EEGs show focal interictal slow-wave discharges without spikes, EEG-fMRI can visualize related focal BOLD activation thus providing useful information for pre-surgical planning.

Continuous EEG–fMRI in patients with partial epilepsy and focal interictal slow-wave discharges on EEG.

BONGIOVANNI, Luigi Giuseppe;STORTI, Silvia Francesca;POZZI MUCELLI, Roberto;FIASCHI, Antonio;AVESANI, Mirko
2008-01-01

Abstract

PURPOSE: To verify whether in patients with partial epilepsy and routine electroenecephalogram (EEG) showing focal interictal slow-wave discharges without spikes combined EEG-functional magnetic resonance imaging (fMRI) would localize the corresponding epileptogenic focus, thus providing reliable information on the epileptic source. METHODS: Eight patients with partial epileptic seizures whose routine scalp EEG recordings on presentation showed focal interictal slow-wave activity underwent EEG-fMRI. EEG data were continuously recorded for 24 min (four concatenated sessions) from 18 scalp electrodes, while fMRI scans were simultaneously acquired with a 1.5-Tesla magnetic resonance imaging (MRI) scanner. After recording sessions and MRI artefact removal, EEG data were analyzed offline. We compared blood oxygen level-dependent (BOLD) signal changes on fMRI with EEG recordings obtained at rest and during activation (with and without focal interictal slow-wave discharges). RESULTS: In all patients, when the EEG tracing showed the onset of focal slow-wave discharges on a few lateralized electrodes, BOLD-fMRI activation in the corresponding brain area significantly increased. We detected significant concordance between focal EEG interictal slow-wave discharges and focal BOLD activation on fMRI. In patients with lesional epilepsy, the epileptogenic area corresponded to the sites of increased focal BOLD signal. CONCLUSIONS: Even in patients with partial epilepsy whose standard EEGs show focal interictal slow-wave discharges without spikes, EEG-fMRI can visualize related focal BOLD activation thus providing useful information for pre-surgical planning.
2008
Partial seizures; Symptomatic epilepsy; EEG; fMRI; Coregistration; BOLD
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/317932
Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 29
social impact