The alternating processes applied in membrane bioreactors for municipal wastewater treatment may be an attractive option to reduce the energy consumptions and optimize carbon and nitrogen removal. However, the knowledge of these systems is often based on empirical results so to discourage the plant operators for its adoption. This paper discusses and compares the empirical evidence coming from two different alternating membrane bioreactors, a demonstration and a full-scale one. The two plants treat two real municipal wastewaters, rather different for both C:N ratio and degree of biodegradability of the influent organics. Nine steady-state runs have been carried out in the demonstration plant, while a one whole year operation has been considered for the full-scale system. Combining the results of the two MBRs, it was found that the alternating process was able to adjust automatically and adequately the aeration of the biological reactor with a nitrogen loading rate in the range 0.05– 0.18 kgN m!3 d!1 and C:N mass ratios greater than 5–6. As a result, the use of the available carbon source, with concern to the total nitrogen removal, was as low as 0.1 kg of total nitrogen removed per kg of total influent COD. Effluent total nitrogen met the standard for reuse with specific energy consumptions in the range 85–109 gTNremoved per kWhconsumed. Considering the usual loading conditions of the municipal wastewater treatment plants in Italy, membrane bioreactors operating alternating processes may be implemented to increase the nitrogen treatment capacity of existing plants and achieve the standards for reuse.

Long term experience with an automatic process control for nitrogen removal in membrane bioreactors

FATONE, Francesco;BOLZONELLA, David;CECCHI, Franco
2008-01-01

Abstract

The alternating processes applied in membrane bioreactors for municipal wastewater treatment may be an attractive option to reduce the energy consumptions and optimize carbon and nitrogen removal. However, the knowledge of these systems is often based on empirical results so to discourage the plant operators for its adoption. This paper discusses and compares the empirical evidence coming from two different alternating membrane bioreactors, a demonstration and a full-scale one. The two plants treat two real municipal wastewaters, rather different for both C:N ratio and degree of biodegradability of the influent organics. Nine steady-state runs have been carried out in the demonstration plant, while a one whole year operation has been considered for the full-scale system. Combining the results of the two MBRs, it was found that the alternating process was able to adjust automatically and adequately the aeration of the biological reactor with a nitrogen loading rate in the range 0.05– 0.18 kgN m!3 d!1 and C:N mass ratios greater than 5–6. As a result, the use of the available carbon source, with concern to the total nitrogen removal, was as low as 0.1 kg of total nitrogen removed per kg of total influent COD. Effluent total nitrogen met the standard for reuse with specific energy consumptions in the range 85–109 gTNremoved per kWhconsumed. Considering the usual loading conditions of the municipal wastewater treatment plants in Italy, membrane bioreactors operating alternating processes may be implemented to increase the nitrogen treatment capacity of existing plants and achieve the standards for reuse.
2008
Water reuse; Membrane bioreactor; Intermittent aeration control
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/316032
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact