We report a novel gain-of-function JAK2 exon 12 insertion mutation in a patient with idiopathic erythrocytosis and low serum erythropoietin level. To date, only rare cases of such mutations have been reported in the JAK2 exon 12. Using computer-based structural modelling we propose that this mutation causes the loss of the JAK2 auto-inhibition step, leading to the constitutive activation of JAK2 tyrosine kinase-dependent activity. Our model-based hypothesis provides a useful approach for the investigation of the phenotype-genotype relationship in myeloproliferative disorders involving JAK2.
Loss of the JAK2 intramolecular auto-inhibition mechanism is predicted by structural modeling of a novel exon 12 insertion mutation in a case of Idiopathic Erythrocytosis
GIORGETTI, ALEJANDRO;
2008-01-01
Abstract
We report a novel gain-of-function JAK2 exon 12 insertion mutation in a patient with idiopathic erythrocytosis and low serum erythropoietin level. To date, only rare cases of such mutations have been reported in the JAK2 exon 12. Using computer-based structural modelling we propose that this mutation causes the loss of the JAK2 auto-inhibition step, leading to the constitutive activation of JAK2 tyrosine kinase-dependent activity. Our model-based hypothesis provides a useful approach for the investigation of the phenotype-genotype relationship in myeloproliferative disorders involving JAK2.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.