This study examined the effect of end-point cadence on the parameters of the work-time relationship determined for cycle ergometry. Eight male subjects completed four maximal tests on an electrically-braked cycle ergometer that regulated a constant power output independent of cadence. The power outputs imposed ranged between an average of 259 W and 403 W, whereas the corresponding durations ranged between 139 s and 1691 s. During each test subjects were required to maintain a cadence of 80-90 rpm. Accumulated time to end-point cadences of 70, 60 and 50 rpm were recorded. The four work-time determinations for each of three end-point cadences were used to determine linear relationships between work and time, yielding both a y-intercept, which represents anaerobic work capacity, and a slope, which is termed critical power (CP), for each end-point cadence. There was a significant increase in the y-intercept as end-point cadence decreased from 70 to 60 rpm (F[1,7] = 36.7, p < 0.001) or 70 to 50 rpm (F[1,7] = 80.1, p < 0.001), but not from 60 rpm to 50 rpm (F[1,7] = 3.28, p > 0.05). In contrast, there was no effect of end-point cadence on CP (F[2,14] = 1.89, p < 0.05). These results demonstrate that the end-point cadence selected to terminate tests only affects the y-intercept of the work-time relationship. To control for this effect, the cadence at which each test is terminated should be standardised if determination of anaerobic work capacity, as represented by the y-intercept, is required.
Titolo: | Effect of end-point cadence on the maximal work-time relationship |
Autori: | |
Data di pubblicazione: | 1995 |
Rivista: | |
Abstract: | This study examined the effect of end-point cadence on the parameters of the work-time relationship determined for cycle ergometry. Eight male subjects completed four maximal tests on an electrically-braked cycle ergometer that regulated a constant power output independent of cadence. The power outputs imposed ranged between an average of 259 W and 403 W, whereas the corresponding durations ranged between 139 s and 1691 s. During each test subjects were required to maintain a cadence of 80-90 rpm. Accumulated time to end-point cadences of 70, 60 and 50 rpm were recorded. The four work-time determinations for each of three end-point cadences were used to determine linear relationships between work and time, yielding both a y-intercept, which represents anaerobic work capacity, and a slope, which is termed critical power (CP), for each end-point cadence. There was a significant increase in the y-intercept as end-point cadence decreased from 70 to 60 rpm (F[1,7] = 36.7, p < 0.001) or 70 to 50 rpm (F[1,7] = 80.1, p < 0.001), but not from 60 rpm to 50 rpm (F[1,7] = 3.28, p > 0.05). In contrast, there was no effect of end-point cadence on CP (F[2,14] = 1.89, p < 0.05). These results demonstrate that the end-point cadence selected to terminate tests only affects the y-intercept of the work-time relationship. To control for this effect, the cadence at which each test is terminated should be standardised if determination of anaerobic work capacity, as represented by the y-intercept, is required. |
Handle: | http://hdl.handle.net/11562/314980 |
Appare nelle tipologie: | 01.01 Articolo in Rivista |