The ability to associate labels to colors is very natural for human beings. Though, this apparently simple task hides very complex and still unsolved problems, spreading over many different disciplines ranging from neurophysiology to psychology and imaging. In this paper, we propose a discrete model for computational color categorization and naming. Starting from the 424 color specimens of the OSA-UCS set, we propose a fuzzy partitioning of the color space. Each of the 11 basic color categories identified by Berlin and Kay is modeled as a fuzzy set whose membership function is implicitly defined by fitting the model to the results of an ad hoc psychophysical experiment (Experiment 1). Each OSA-UCS sample is represented by a feature vector whose components are the memberships to the different categories. The discrete model consists of a three-dimensional Delaunay triangulation of the CIELABcolor space which associates each OSA-UCS sample to a vertex of a 3D tetrahedron. Linear interpolation is used to estimate themembership values of any other point in the color space. Model validation is performed both directly, through the comparison ofthe predicted membership values to the subjective counterparts, as evaluated via another psychophysical test (Experiment 2), andindirectly, through the investigation of its exploitability for image segmentation. The model has proved to be successful in bothcases, providing an estimation of the membership values in good agreement with the subjective measures as well as a semanticallymeaningful color-based segmentation map.

A Discrete Model for Color Naming

MENEGAZ, Gloria
;
2007-01-01

Abstract

The ability to associate labels to colors is very natural for human beings. Though, this apparently simple task hides very complex and still unsolved problems, spreading over many different disciplines ranging from neurophysiology to psychology and imaging. In this paper, we propose a discrete model for computational color categorization and naming. Starting from the 424 color specimens of the OSA-UCS set, we propose a fuzzy partitioning of the color space. Each of the 11 basic color categories identified by Berlin and Kay is modeled as a fuzzy set whose membership function is implicitly defined by fitting the model to the results of an ad hoc psychophysical experiment (Experiment 1). Each OSA-UCS sample is represented by a feature vector whose components are the memberships to the different categories. The discrete model consists of a three-dimensional Delaunay triangulation of the CIELABcolor space which associates each OSA-UCS sample to a vertex of a 3D tetrahedron. Linear interpolation is used to estimate themembership values of any other point in the color space. Model validation is performed both directly, through the comparison ofthe predicted membership values to the subjective counterparts, as evaluated via another psychophysical test (Experiment 2), andindirectly, through the investigation of its exploitability for image segmentation. The model has proved to be successful in bothcases, providing an estimation of the membership values in good agreement with the subjective measures as well as a semanticallymeaningful color-based segmentation map.
2007
Color naming; ideal observer
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/314477
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 8
social impact