We propose a notion of symmetric reduction for a system of proof nets for multiplicative Affine Logic with Mix. We prove that such a reduction has the strong normalization and Church-Rosser properties. A notion of irrelevance in a proof net is defined and the possibility of cancelling the irrelevant parts without erasing the entire net is taken as one of the correctness conditions. Therefore purely local cut-reductions are given, minimizing cancellation and suggesting a paradigm of "computation without garbage collection". Reconsidering Ketonen and Weyhrauch's decision procedure for affine logic, the use od the mix rule is related to the non-determinism of classical proof theory. The question arises whether these features of classical cut-elimination are really irreducible to the familiar paradigm of cut-elimination in intuitionistic and linea logic.

Two paradigms of logical computation in affine logic?

BELLIN, Gianluigi
2003-01-01

Abstract

We propose a notion of symmetric reduction for a system of proof nets for multiplicative Affine Logic with Mix. We prove that such a reduction has the strong normalization and Church-Rosser properties. A notion of irrelevance in a proof net is defined and the possibility of cancelling the irrelevant parts without erasing the entire net is taken as one of the correctness conditions. Therefore purely local cut-reductions are given, minimizing cancellation and suggesting a paradigm of "computation without garbage collection". Reconsidering Ketonen and Weyhrauch's decision procedure for affine logic, the use od the mix rule is related to the non-determinism of classical proof theory. The question arises whether these features of classical cut-elimination are really irreducible to the familiar paradigm of cut-elimination in intuitionistic and linea logic.
2003
proof nets; Affine logic
File in questo prodotto:
File Dimensione Formato  
Two_paradigms.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Dominio pubblico
Dimensione 1.69 MB
Formato Adobe PDF
1.69 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/312312
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact