The intracellular ionic content of human erythrocytes may be altered by hyperglycaemia. Despite this, very little is known about the cellular mechanisms linking glucose and cellular magnesium homeostasis. We measured intracellular ionized magnesium in human lymphocytes, by means of a fluorimetric technique, total intracellular magnesium by means of atomic absorption spectrophotometry and intracellular ATP by means of HPLC. The incubation of lymphocytes with D-glucose in the absence of insulin was followed by a significant decrease in intracellular ionized magnesium; this effect did not occur when the cells were incubated with L-glucose. The effect of glucose on intracellular ionized magnesium was blocked by amphotericin B and the EC(50) of the effect of glucose on intracellular ionized magnesium was about 5 mmol/l of glucose. The increase of intracellular ionized magnesium in cells incubated in the absence of glucose was followed by a decrease in intracellular ATP. In a Na(+)-free medium the decrease of intracellular ionized magnesium in the presence of glucose was still present and the incubation of lymphocytes with glucose did not modify total intralymphocyte magnesium. By selective permeabilization of cell membranes, we established that glucose could not increase compartmentalized intracellular ionized magnesium. Our data supports the hypothesis that glucose per se induces a substantial decrease in intracellular ionized magnesium, which is probably due to an augmented binding of intracellular ionized magnesium to cellular ATP.

Glucose-induced alterations of intracellular ionized magnesium in human lymphocytes.

DELVA, Pietro;DEGAN, Maurizio;FACCINI, Giovanni;LECHI, Alessandro
2002-01-01

Abstract

The intracellular ionic content of human erythrocytes may be altered by hyperglycaemia. Despite this, very little is known about the cellular mechanisms linking glucose and cellular magnesium homeostasis. We measured intracellular ionized magnesium in human lymphocytes, by means of a fluorimetric technique, total intracellular magnesium by means of atomic absorption spectrophotometry and intracellular ATP by means of HPLC. The incubation of lymphocytes with D-glucose in the absence of insulin was followed by a significant decrease in intracellular ionized magnesium; this effect did not occur when the cells were incubated with L-glucose. The effect of glucose on intracellular ionized magnesium was blocked by amphotericin B and the EC(50) of the effect of glucose on intracellular ionized magnesium was about 5 mmol/l of glucose. The increase of intracellular ionized magnesium in cells incubated in the absence of glucose was followed by a decrease in intracellular ATP. In a Na(+)-free medium the decrease of intracellular ionized magnesium in the presence of glucose was still present and the incubation of lymphocytes with glucose did not modify total intralymphocyte magnesium. By selective permeabilization of cell membranes, we established that glucose could not increase compartmentalized intracellular ionized magnesium. Our data supports the hypothesis that glucose per se induces a substantial decrease in intracellular ionized magnesium, which is probably due to an augmented binding of intracellular ionized magnesium to cellular ATP.
2002
magnesium; glucose; lymphocyte
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/310188
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact