Using liquid-filled catheters, we recorded, in 30 anesthetized, spontaneously breathing supine rabbits, the hydraulic pressure from the parietal subpleural interstitial space (Pspl). Through a small exposed area of parietal pleura a plastic catheter (1 mm ED), with a closed and smooth tip and several holes on the last centimeter, was carefully advanced between the muscular layer and the parietal pleura, tangentially to the pleural surface to reach the submesothelial layer. Simultaneous measurements of pleural liquid pressure (Pliq) were obtained from intrapleurally placed cannulas. End-expiratory Pspl decreased (became more negative) with increasing height (LH) according to the following: Pspl (cmH2O) = -1 - 0.4 LH (cm), the corresponding equation for Pliq being Pliq (cmH2O) = -1.5 - 0.7 LH (cm). Thus at end expiration a transpleural hydraulic pressure difference (Pliq-Pspl) developed at any height, increasing from the bottom to the top of the cavity as Pliq - Pspl (cmH2O) = -0.5 - 0.3 LH (cm). The Pliq-Pspl difference increased during inspiration due to the much smaller tidal change in Pspl than in Pliq. By considering the gravity-dependent distribution of the functional hydrostatic pressure in the systemic capillaries of the pleura (Pc) and the Pspl and Pliq values integrated over the respiratory cycle we estimated that on the average, the Pc-Pspl difference is sevenfold larger than the Pspl-Pliq difference.

Gravity-dependent distribution of parietal subpleural interstitial pressure

Capelli C.;
1987-01-01

Abstract

Using liquid-filled catheters, we recorded, in 30 anesthetized, spontaneously breathing supine rabbits, the hydraulic pressure from the parietal subpleural interstitial space (Pspl). Through a small exposed area of parietal pleura a plastic catheter (1 mm ED), with a closed and smooth tip and several holes on the last centimeter, was carefully advanced between the muscular layer and the parietal pleura, tangentially to the pleural surface to reach the submesothelial layer. Simultaneous measurements of pleural liquid pressure (Pliq) were obtained from intrapleurally placed cannulas. End-expiratory Pspl decreased (became more negative) with increasing height (LH) according to the following: Pspl (cmH2O) = -1 - 0.4 LH (cm), the corresponding equation for Pliq being Pliq (cmH2O) = -1.5 - 0.7 LH (cm). Thus at end expiration a transpleural hydraulic pressure difference (Pliq-Pspl) developed at any height, increasing from the bottom to the top of the cavity as Pliq - Pspl (cmH2O) = -0.5 - 0.3 LH (cm). The Pliq-Pspl difference increased during inspiration due to the much smaller tidal change in Pspl than in Pliq. By considering the gravity-dependent distribution of the functional hydrostatic pressure in the systemic capillaries of the pleura (Pc) and the Pspl and Pliq values integrated over the respiratory cycle we estimated that on the average, the Pc-Pspl difference is sevenfold larger than the Pspl-Pliq difference.
1987
pleural space; pleural liquid pressure; Starling equilibrium
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/307889
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 21
social impact