TP hydrolysis induces the activation of the proton ATPase in chromatophores of Rhodobacter capsulatus supplemented with nigericine and 50 mM K+ (i.e. when delta pH < 0.2 units). The value of transmembrane electric potential (delta phi) driving this activation was measured using three different approaches: carotenoid electrochromism, uptake of SCN- and responses of the dye oxonol VI. The value of delta phi calculated from the SCN- uptake, on the basis of an internal volume determined experimentally, was about 140 mV, while that indicated by the electrochromic signal ranged between 35 and 70 mV. Only the value indicated by SCN- distribution is consistent with the energetic requirement for the activation of H(+)-ATPase.

Unreliability of carotenoid electrochromism for the measure of electrical potential differences induced by ATP hydrolysis in bacterial chromatophores

CRIMI, Massimo;
1995-01-01

Abstract

TP hydrolysis induces the activation of the proton ATPase in chromatophores of Rhodobacter capsulatus supplemented with nigericine and 50 mM K+ (i.e. when delta pH < 0.2 units). The value of transmembrane electric potential (delta phi) driving this activation was measured using three different approaches: carotenoid electrochromism, uptake of SCN- and responses of the dye oxonol VI. The value of delta phi calculated from the SCN- uptake, on the basis of an internal volume determined experimentally, was about 140 mV, while that indicated by the electrochromic signal ranged between 35 and 70 mV. Only the value indicated by SCN- distribution is consistent with the energetic requirement for the activation of H(+)-ATPase.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/307615
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact