Synchronous oscillations of intracellular calcium concentration ([Ca2+]i) and of membrane potential occurred in a limited population of glutamatergic hippocampal neurons grown in primary cultures. The oscillatory activity occurred in synaptically connected cells only when they were in the presence of astrocytes. Microcultures containing only one or a few neurons also displayed oscillatory activity, provided that glial cells participated in the network. The glutamate-transporter inhibitors L-trans-pyrrolidine-2, 4-dicarboxylic acid (PDC) and dihydrokainate, which produce an accumulation of glutamate in the synaptic microenvironment, impaired the oscillatory activity. Moreover, in neurons not spontaneously oscillating, though in the presence of astrocytes, oscillations were induced by exogenous L-glutamate, but not by the stereoisomer D-glutamate, which is not taken up by glutamate transporters. These data demonstrate that astrocytes are essential for neuronal oscillatory activity and provide evidence that removal of glutamate from the synaptic environment is one of the major mechanisms by which glial cells allow the repetitive excitation of the postsynaptic cell

Astrocytes are required for the oscillatory activity in cultured hippocampal neurons

FUMAGALLI, Guido Francesco;
1999-01-01

Abstract

Synchronous oscillations of intracellular calcium concentration ([Ca2+]i) and of membrane potential occurred in a limited population of glutamatergic hippocampal neurons grown in primary cultures. The oscillatory activity occurred in synaptically connected cells only when they were in the presence of astrocytes. Microcultures containing only one or a few neurons also displayed oscillatory activity, provided that glial cells participated in the network. The glutamate-transporter inhibitors L-trans-pyrrolidine-2, 4-dicarboxylic acid (PDC) and dihydrokainate, which produce an accumulation of glutamate in the synaptic microenvironment, impaired the oscillatory activity. Moreover, in neurons not spontaneously oscillating, though in the presence of astrocytes, oscillations were induced by exogenous L-glutamate, but not by the stereoisomer D-glutamate, which is not taken up by glutamate transporters. These data demonstrate that astrocytes are essential for neuronal oscillatory activity and provide evidence that removal of glutamate from the synaptic environment is one of the major mechanisms by which glial cells allow the repetitive excitation of the postsynaptic cell
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/307430
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 35
social impact