In lizards, tail loss transects spinal nerves and the cut axons elongate in the regrowing tail, providing a natural paradigm of robust regenerative response of injured spinal motoneurons. We previously ascertained that these events involve nitric oxide synthase induction in the axotomized motoneurons, suggesting a correlation of this enzyme with regeneration-associated gene expression. Here we investigated, in lizards, whether the cell death repressor Bcl-2 protein and growth-associated protein-43 (GAP-43) were also induced in motoneurons that innervate the regenerated tail in the first month post-caudotomy. Single and multiple immunocytochemical techniques, and quantitative image analysis, were performed. Nitric oxide synthase, GAP-43 or Bcl-2 immunoreactivity was very low or absent in spinal motoneurons of control lizards with intact tail. Nitric oxide synthase and GAP-43 were induced during the first month post-caudotomy in more than 75% of motoneurons which innnervate the regenerate. Bcl-2 was induced in approximately 95% of these motoneurons at five and 15days, and in about 35% at one month. The intensity of Bcl-2 and GAP-43 immunostaining peaked at five days, and nitric oxide synthase at 15days; immunoreactivity to these proteins was still significantly high at one month. Immunofluorescence revealed co-localization of nitric oxide synthase, GAP-43 and Bcl-2 in the vast majority of motoneurons at five and 15days post-caudotomy. These findings demonstrate that co-induction of nitric oxide synthase, Bcl-2 and GAP-43 may be part of the molecular repertoire of injured motoneurons committed to survival and axon regeneration, and strongly favor a role of nitric oxide synthase in motoneuron plasticity.
Co-induction of nitric oxide synthase, Bcl-2 and growth-associated protein-43 in spinal motoneurons during axon regeneration in the lizard tail.
BENTIVOGLIO FALES, Marina
2000-01-01
Abstract
In lizards, tail loss transects spinal nerves and the cut axons elongate in the regrowing tail, providing a natural paradigm of robust regenerative response of injured spinal motoneurons. We previously ascertained that these events involve nitric oxide synthase induction in the axotomized motoneurons, suggesting a correlation of this enzyme with regeneration-associated gene expression. Here we investigated, in lizards, whether the cell death repressor Bcl-2 protein and growth-associated protein-43 (GAP-43) were also induced in motoneurons that innervate the regenerated tail in the first month post-caudotomy. Single and multiple immunocytochemical techniques, and quantitative image analysis, were performed. Nitric oxide synthase, GAP-43 or Bcl-2 immunoreactivity was very low or absent in spinal motoneurons of control lizards with intact tail. Nitric oxide synthase and GAP-43 were induced during the first month post-caudotomy in more than 75% of motoneurons which innnervate the regenerate. Bcl-2 was induced in approximately 95% of these motoneurons at five and 15days, and in about 35% at one month. The intensity of Bcl-2 and GAP-43 immunostaining peaked at five days, and nitric oxide synthase at 15days; immunoreactivity to these proteins was still significantly high at one month. Immunofluorescence revealed co-localization of nitric oxide synthase, GAP-43 and Bcl-2 in the vast majority of motoneurons at five and 15days post-caudotomy. These findings demonstrate that co-induction of nitric oxide synthase, Bcl-2 and GAP-43 may be part of the molecular repertoire of injured motoneurons committed to survival and axon regeneration, and strongly favor a role of nitric oxide synthase in motoneuron plasticity.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.