Since NO production by NOS-2 made by astrocytes activated by proinflammatory cytokines contributes to the killing of neurons in variously damaged human brains, knowing the mechanisms responsible for NOS-2 expression should contribute to developing effective therapeutics. The expression and activation of NOS-2 in normal adult human cerebral cortical astrocytes treated with three proinflammatory cytokines, IL-1beta, TNF-alpha, and IFN-gamma, are driven by two separable mechanisms. NOS-2 expression requires a burst of p38 MAPK activity, while the activation of the resulting enzyme protein requires MEK/ERK-dependent BH4 (tetrahydrobiopterin) synthesis between 24 and 24.5 h after adding the cytokines to the culture medium. Here we show that NOS-2 expression in the activated astrocytes requires that the culture medium contain 1.8 mM Ca2+, but it is unaffected by inhibiting calcium-sensing receptors (CASRs) with NPS 89636. However, NOS-2 activation is inhibited by NPS 89626 during the MEK/ERK-dependent stage between 24 and 24.5 h after adding the cytokines, and this inhibition can be overridden by exogenous BH4. Therefore, NOS-2 expression and the subsequent BH4-dependent NOS-2-activation in human astrocytes need 1.8 mM Ca2+ to be in the culture medium, while NOS-2 activation also needs functional CASRs between 24 and 24.5 h after cytokine addition. These findings raise the possibility that calcilytic drugs prevent NO-induced damage and death of human neurons.

Roles of Ca2+ and the Ca2+-Sensing Receptor (CaSR) in the Expression of Inducible NOS (Nitric Oxide Synthase)-2 and Its BH4 (Tetrahydrobiopterin)-Dependent Activation in Cytokine-Stimulated Adult Human Astrocytes

DAL PRÀ, Ilaria Pierpaola;CHIARINI, Anna Maria;ARMATO, Ubaldo;
2005-01-01

Abstract

Since NO production by NOS-2 made by astrocytes activated by proinflammatory cytokines contributes to the killing of neurons in variously damaged human brains, knowing the mechanisms responsible for NOS-2 expression should contribute to developing effective therapeutics. The expression and activation of NOS-2 in normal adult human cerebral cortical astrocytes treated with three proinflammatory cytokines, IL-1beta, TNF-alpha, and IFN-gamma, are driven by two separable mechanisms. NOS-2 expression requires a burst of p38 MAPK activity, while the activation of the resulting enzyme protein requires MEK/ERK-dependent BH4 (tetrahydrobiopterin) synthesis between 24 and 24.5 h after adding the cytokines to the culture medium. Here we show that NOS-2 expression in the activated astrocytes requires that the culture medium contain 1.8 mM Ca2+, but it is unaffected by inhibiting calcium-sensing receptors (CASRs) with NPS 89636. However, NOS-2 activation is inhibited by NPS 89626 during the MEK/ERK-dependent stage between 24 and 24.5 h after adding the cytokines, and this inhibition can be overridden by exogenous BH4. Therefore, NOS-2 expression and the subsequent BH4-dependent NOS-2-activation in human astrocytes need 1.8 mM Ca2+ to be in the culture medium, while NOS-2 activation also needs functional CASRs between 24 and 24.5 h after cytokine addition. These findings raise the possibility that calcilytic drugs prevent NO-induced damage and death of human neurons.
2005
Ca2+; Ca2+-sensing receptor (CaSR); NOS-2; BH4 (tetrahydrobiopterin); cytokines; cultured normal adult human astrocytes
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/306615
Citazioni
  • ???jsp.display-item.citation.pmc??? 17
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 44
social impact