OBJECT: Because of toxicity at high concentrations, nitric oxide (NO) contributes to spinal cord injury (SCI) secondary lesions. At low concentrations NO modulates nuclear factor-kappaB (NF-kappaB) activation. The authors investigated the activity of neuronal and endothelial NO synthase (nNOS and eNOS) to determine correlations with NF-kappaB activation and inducible NOS (iNOS) expression soon after SCI.METHODS: In 48 adult male Wistar rats clip-based (50 g/mm2/10 seconds) SCI was induced, and spinal cords were removed at different intervals for the following evaluations: 1) assaying specific activity of nNOS and eNOS; 2) electrophoresis mobility shift assay for activated NF-kappaB; 3) Northern blotting for iNOS; 4) immunohistochemistry for iNOS and NF-kappaB; and 5) immunofluorescence for iNOS and NF-kappaB. At 15 minutes postinjury, eNOS activity decreased significantly (p < 0.001), as did nNOS activity at 1 hour compared with these levels in control animals and rats killed at 15 and 30 minutes after SCI (p < 0.001). Basal NF-kappaB levels were variable in controls and at 15 and 30 minutes after injury. One hour postinjury, NF-kappaB activation was diffuse. Inducible NOS messenger RNA localized diffusely, peaking 6 hours after injury and remaining stable until 24 hours postinjury. Immunohistochemical analysis showed diffuse iNOS and NF-kappaB staining, especially in neurons inside and around the lesion. Immunofluorescence demonstrated that injured neurons were a source of NF-kappaB and iNOS soon after injury.CONCLUSIONS: Both nNOS and eNOS exhibited different regulation and roles soon after injury: nNOS correlated with NF-kappaB activation, whereas eNOS may have participated in vascular changes of the injured spinal cord. Neurons seemed to play a pivotal role in modulating and amplifying the inflammatory response in the injured spinal cord.

Early nuclear factor-kappaB activation and inducible nitric oxide synthase expression in injured spinal cord neurons correlating with a diffuse reduction of constitutive nitric oxide synthase activity.

Menegazzi M.;Mariotto S.;Suzuki H.
2006-01-01

Abstract

OBJECT: Because of toxicity at high concentrations, nitric oxide (NO) contributes to spinal cord injury (SCI) secondary lesions. At low concentrations NO modulates nuclear factor-kappaB (NF-kappaB) activation. The authors investigated the activity of neuronal and endothelial NO synthase (nNOS and eNOS) to determine correlations with NF-kappaB activation and inducible NOS (iNOS) expression soon after SCI.METHODS: In 48 adult male Wistar rats clip-based (50 g/mm2/10 seconds) SCI was induced, and spinal cords were removed at different intervals for the following evaluations: 1) assaying specific activity of nNOS and eNOS; 2) electrophoresis mobility shift assay for activated NF-kappaB; 3) Northern blotting for iNOS; 4) immunohistochemistry for iNOS and NF-kappaB; and 5) immunofluorescence for iNOS and NF-kappaB. At 15 minutes postinjury, eNOS activity decreased significantly (p < 0.001), as did nNOS activity at 1 hour compared with these levels in control animals and rats killed at 15 and 30 minutes after SCI (p < 0.001). Basal NF-kappaB levels were variable in controls and at 15 and 30 minutes after injury. One hour postinjury, NF-kappaB activation was diffuse. Inducible NOS messenger RNA localized diffusely, peaking 6 hours after injury and remaining stable until 24 hours postinjury. Immunohistochemical analysis showed diffuse iNOS and NF-kappaB staining, especially in neurons inside and around the lesion. Immunofluorescence demonstrated that injured neurons were a source of NF-kappaB and iNOS soon after injury.CONCLUSIONS: Both nNOS and eNOS exhibited different regulation and roles soon after injury: nNOS correlated with NF-kappaB activation, whereas eNOS may have participated in vascular changes of the injured spinal cord. Neurons seemed to play a pivotal role in modulating and amplifying the inflammatory response in the injured spinal cord.
spinal cord injury; nitric oxide; NF-kB
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/305783
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 13
social impact