The absorption spectra of two light harvesting complexes from higher plants, CP29 and LHC II, have been analysed in the Soret region in order to obtain a description in terms of the absorption spectra of the individual pigments. This information is of great practical use when applying spectroscopic techniques to the study of energy transfer in photosynthesis such as time-resolved spectroscopy thus allowing determination of the relative absorption cross-section for the different chromophores in the system as a function of wavelength. In this study, recombinant Lhc proteins carrying point mutations in pigment-binding residues have been used in order to obtain the spectral shape of individual chromophores by differential spectroscopy with respect to the WT protein. Combinations of spectra thus obtained were then used to fit the absorption spectra of WT and mutant pigment-proteins according to the constraints posed by stoichiometry of pigments as derived by biochemical analysis. This procedure allowed identification of each pigment in term of its wavelength position, spectral shape and extinction coefficient. The data obtained by this procedure have been successfully applied to the description of other higher plant Lhc proteins thus supporting the view that the Lhc superfamily members share specific pigment-protein interactions as suggested by sequence homology.

The Soret absorption properties of carotenoids and chlorophylls in antenna complexes of higher plants

CROCE, Roberta;CINQUE, Gianfelice;BASSI, Roberto
2000-01-01

Abstract

The absorption spectra of two light harvesting complexes from higher plants, CP29 and LHC II, have been analysed in the Soret region in order to obtain a description in terms of the absorption spectra of the individual pigments. This information is of great practical use when applying spectroscopic techniques to the study of energy transfer in photosynthesis such as time-resolved spectroscopy thus allowing determination of the relative absorption cross-section for the different chromophores in the system as a function of wavelength. In this study, recombinant Lhc proteins carrying point mutations in pigment-binding residues have been used in order to obtain the spectral shape of individual chromophores by differential spectroscopy with respect to the WT protein. Combinations of spectra thus obtained were then used to fit the absorption spectra of WT and mutant pigment-proteins according to the constraints posed by stoichiometry of pigments as derived by biochemical analysis. This procedure allowed identification of each pigment in term of its wavelength position, spectral shape and extinction coefficient. The data obtained by this procedure have been successfully applied to the description of other higher plant Lhc proteins thus supporting the view that the Lhc superfamily members share specific pigment-protein interactions as suggested by sequence homology.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/304953
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 86
  • ???jsp.display-item.citation.isi??? ND
social impact