The biochemical properties of PsbS protein, a nuclear-encoded Photosystem II subunit involved in the high energy quenching of chlorophyll fluorescence, have been studied using preparations purified from chloroplasts or obtained by overexpression in bacteria. Despite the homology with chlorophyll a/b/xanthophyll-binding proteins of the Lhc family, native PsbS protein does not show any detectable ability to bind chlorophylls or carotenoids in conditions in which Lhc proteins maintain full pigment binding. The recombinant protein, when refolded in vitro in the presence of purified pigments, neither binds chlorophylls nor xanthophylls, differently from the homologous proteins LHCII, CP26, and CP29 that refold into stable pigment-binding complexes. Thus, it is concluded that if PsbS is a pigment-binding protein in vivo, the binding mechanism must be different from that present in other Lhc proteins. Primary sequence analysis provides evidence for homology of PsbS helices I and III with the central 2-fold symmetric core of chlorophyll a/b-binding proteins. Moreover, a structural homology owed to the presence of acidic residues in each of the two lumen-exposed loops is found with the dicyclohexylcarbodiimide/Ca2+-binding domain of CP29. Consistently, both native and recombinant PsbS proteins showed [14C]dicyclohexylcarbodiimide binding, thus supporting a functional basis for its homology with CP29 on the lumen-exposed loops. This domain is suggested to be involved in sensing low luminal pH.

Biochemical properties of the PsbS subunit of Photosystem II either purified from chloroplast or recombinant

DOMINICI, Paola;CAFFARRI, Stefano;CEOLDO, Stefania;CRIMI, Massimo;BASSI, Roberto
2002-01-01

Abstract

The biochemical properties of PsbS protein, a nuclear-encoded Photosystem II subunit involved in the high energy quenching of chlorophyll fluorescence, have been studied using preparations purified from chloroplasts or obtained by overexpression in bacteria. Despite the homology with chlorophyll a/b/xanthophyll-binding proteins of the Lhc family, native PsbS protein does not show any detectable ability to bind chlorophylls or carotenoids in conditions in which Lhc proteins maintain full pigment binding. The recombinant protein, when refolded in vitro in the presence of purified pigments, neither binds chlorophylls nor xanthophylls, differently from the homologous proteins LHCII, CP26, and CP29 that refold into stable pigment-binding complexes. Thus, it is concluded that if PsbS is a pigment-binding protein in vivo, the binding mechanism must be different from that present in other Lhc proteins. Primary sequence analysis provides evidence for homology of PsbS helices I and III with the central 2-fold symmetric core of chlorophyll a/b-binding proteins. Moreover, a structural homology owed to the presence of acidic residues in each of the two lumen-exposed loops is found with the dicyclohexylcarbodiimide/Ca2+-binding domain of CP29. Consistently, both native and recombinant PsbS proteins showed [14C]dicyclohexylcarbodiimide binding, thus supporting a functional basis for its homology with CP29 on the lumen-exposed loops. This domain is suggested to be involved in sensing low luminal pH.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/304922
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 126
  • ???jsp.display-item.citation.isi??? ND
social impact