The steady state absorption and fluorescence spectroscopic properties of the xanthophylls, violaxanthin, zeaxanthin, and lutein, and the efficiencies of singlet energy transfer from the individual xanthophylls to chlorophyll have been investigated in recombinant CP26 protein overexpressed in Escherichia coli and then refolded in vitro with purified pigments. Also, the effect of the different xanthophylls on the extents of static and dynamic quenching of chlorophyll fluorescence has been investigated. Absorption, fluorescence, and fluorescence excitation demonstrate that the efficiency of light harvesting from the xanthophylls to chlorophyll a is relatively high and insensitive to the particular xanthophyll that is present. A small effect of the different xanthophylls is observed on the extent of quenching of Chl fluorescence. The data provide the precise wavelengths of the absorption and fluorescence features of the bound pigments in the highly congested spectral profiles from these light-harvesting complexes. This information is important in assessing the mechanisms by which higher plants dissipate excess energy in light-harvesting proteins.
Photochemical behavior of xanthophylls in the recombinant photosystem II antenna complex, CP26
CRIMI, Massimo;BASSI, Roberto
2001-01-01
Abstract
The steady state absorption and fluorescence spectroscopic properties of the xanthophylls, violaxanthin, zeaxanthin, and lutein, and the efficiencies of singlet energy transfer from the individual xanthophylls to chlorophyll have been investigated in recombinant CP26 protein overexpressed in Escherichia coli and then refolded in vitro with purified pigments. Also, the effect of the different xanthophylls on the extents of static and dynamic quenching of chlorophyll fluorescence has been investigated. Absorption, fluorescence, and fluorescence excitation demonstrate that the efficiency of light harvesting from the xanthophylls to chlorophyll a is relatively high and insensitive to the particular xanthophyll that is present. A small effect of the different xanthophylls is observed on the extent of quenching of Chl fluorescence. The data provide the precise wavelengths of the absorption and fluorescence features of the bound pigments in the highly congested spectral profiles from these light-harvesting complexes. This information is important in assessing the mechanisms by which higher plants dissipate excess energy in light-harvesting proteins.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.