Low-affinity penicillin binding proteins (PBPs) are a particular class of proteins involved in beta-lactam antibiotic resistance of enterococci. The activity of these PBPs is just sufficient to allow the cells to survive in the presence of high concentrations of beta-lactams that cause saturation (and inhibition) of the other PBPs. For this reason, the low-affinity PBPs are thought to be multifunctional enzymes capable of catalyzing the entire peptidoglycan synthesis. To test the validity of this claim, we analyzed the muropeptide composition by reversed-phase high-performance liquid chromatography of the peptidoglycan synthesized by PBP5 (the low-affinity PBP) of Enterococcus faecalis, in comparison with the peptidoglycan produced normally by the concerted action of the usual PBPs (namely PBPs 1, 2, and 3). Cross-linked peptidoglycan was produced. The main difference consisted in the lack of oligomers higher than trimers, thus suggesting that this oligomer cannot be used as an acceptor/donor by the transpeptidase component of PBP5. The lack of higher oligomers had little impact on total cross-linking because of the increase observed in the dimer family. This increase was distributed among the various members of the dimer family with the result that minor dimer components figured among the prevalent ones in cells in which peptidoglycan was synthesized by PBP5. This also suggests that E. faecalis PBP5 is capable of catalyzing the synthesis of a peptidoglycan that is less precise and refined than usual, and for this reason PBP5 can be considered an enzyme endowed with poor specificity for substrates, as may be expected on the basis of its survival function.

Peptidoglycan synthesis by Enterococcus faecalis penicillin-binding protein 5.

SIGNORETTO, Caterina;BOARETTI, Marzia;CANEPARI, Pietro
1998-01-01

Abstract

Low-affinity penicillin binding proteins (PBPs) are a particular class of proteins involved in beta-lactam antibiotic resistance of enterococci. The activity of these PBPs is just sufficient to allow the cells to survive in the presence of high concentrations of beta-lactams that cause saturation (and inhibition) of the other PBPs. For this reason, the low-affinity PBPs are thought to be multifunctional enzymes capable of catalyzing the entire peptidoglycan synthesis. To test the validity of this claim, we analyzed the muropeptide composition by reversed-phase high-performance liquid chromatography of the peptidoglycan synthesized by PBP5 (the low-affinity PBP) of Enterococcus faecalis, in comparison with the peptidoglycan produced normally by the concerted action of the usual PBPs (namely PBPs 1, 2, and 3). Cross-linked peptidoglycan was produced. The main difference consisted in the lack of oligomers higher than trimers, thus suggesting that this oligomer cannot be used as an acceptor/donor by the transpeptidase component of PBP5. The lack of higher oligomers had little impact on total cross-linking because of the increase observed in the dimer family. This increase was distributed among the various members of the dimer family with the result that minor dimer components figured among the prevalent ones in cells in which peptidoglycan was synthesized by PBP5. This also suggests that E. faecalis PBP5 is capable of catalyzing the synthesis of a peptidoglycan that is less precise and refined than usual, and for this reason PBP5 can be considered an enzyme endowed with poor specificity for substrates, as may be expected on the basis of its survival function.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/304630
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact