Oxidative stress results from an oxidant/antioxidant imbalance, an excess of oxidants, and/or a depletion of antioxidants. A considerable body of recent evidence suggests that oxidative stress and exaggerated production of reactive oxygen species play a major role in several aspects of inflammation. Hypericum perforatum is a medicinal plant species containing many polyphenolic compounds, namely, flavonoids and phenolic acids. Because polyphenolic compounds have high antioxidant potential, in this study, we evaluated the effect of H. perforatum (given at 30 mg . kg (-1)) in an experimental animal model of spinal cord injury, which was induced by the application of vascular clips to the dura via a four-level T5 through T8 laminectomy. The degree of (a) spinal cord inflammation and tissue injury (histological score), (b) nitrotyrosine, (c) poly(adenosine diphosphate-ribose), (d) neutrophils infiltration, and (e) the activation of signal transducer and activator transcription 3 was markedly reduced in spinal cord tissue obtained from H. perforatum extract-treated mice. We have also demonstrated that H. perforatum extract significantly ameliorated the recovery of limb function.

NEUROPROTECTION AND ENHANCED RECOVERY WITH HYPERICUM PERFORATUM EXTRACT AFTER EXPERIMENTAL SPINAL CORD INJURY IN MICE.

MENEGAZZI, Marta Vittoria;SUZUKI, Hisanori;
2006-01-01

Abstract

Oxidative stress results from an oxidant/antioxidant imbalance, an excess of oxidants, and/or a depletion of antioxidants. A considerable body of recent evidence suggests that oxidative stress and exaggerated production of reactive oxygen species play a major role in several aspects of inflammation. Hypericum perforatum is a medicinal plant species containing many polyphenolic compounds, namely, flavonoids and phenolic acids. Because polyphenolic compounds have high antioxidant potential, in this study, we evaluated the effect of H. perforatum (given at 30 mg . kg (-1)) in an experimental animal model of spinal cord injury, which was induced by the application of vascular clips to the dura via a four-level T5 through T8 laminectomy. The degree of (a) spinal cord inflammation and tissue injury (histological score), (b) nitrotyrosine, (c) poly(adenosine diphosphate-ribose), (d) neutrophils infiltration, and (e) the activation of signal transducer and activator transcription 3 was markedly reduced in spinal cord tissue obtained from H. perforatum extract-treated mice. We have also demonstrated that H. perforatum extract significantly ameliorated the recovery of limb function.
2006
oxidative stress; inflammation; STAT-3
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/303774
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 27
social impact