The heterogeneous nuclear ribonucleoprotein (hnRNP) type I, a modulator of alternative splicing, localizes in the nucleoplasm of mammalian cells and in a discrete perinucleolar structure. HnRNP I contains a novel type of bipartite nuclear localization signal (NLS) at the N-terminus of the protein that we have previously named nuclear determinant localization type I (NLD-I). Recently, a neural counterpart of hnRNP I has been identified that contains a putative NLS with two strings of basic amino acids separated by a spacer of 30 residues. In the present study we show that the neural hnRNP I NLS is necessary and sufficient for nuclear localization and represents a variant of the novel bipartite NLS present in the NLD-I domain. Furthermore, we demonstrate that the NLD-I is transported into the nucleus by cytoplasmic factor(s) with active transport modality. Binding assays using recombinant importin α show an interaction with NLD-I similar to that of SV40 large T antigen NLS. Deletion analysis indicates that both stretches of basic residues are necessary for binding to importin α. The above experimental results lead to the conclusion that importin α acts as cytoplasmic receptor for proteins characterized by a bipartite NLS signal that extends up to 37 residues.

The heterogeneous nuclear ribonucleoprotein (hnRNP) type I, a modulator of alternative splicing, localizes in the nucleoplasm of mammalian cells and in a discrete perinucleolar structure. HnRNP I contains a novel type of bipartite nuclear localization signal (NLS) at the N-terminus of the protein that we have previously named nuclear determinant localization type I (NLD-I). Recently, a neural counterpart of hnRNP I has been identified that contains a putative NLS with two strings of basic amino acids separated by a spacer of 30 residues. In the present study we show that the neural hnRNP I NLS is necessary and sufficient for nuclear localization and represents a variant of the novel bipartite NLS present in the NLD-I domain. Furthermore, we demonstrate that the NLD-I is transported into the nucleus by cytoplasmic factor(s) with active transport modality. Binding assays using recombinant importin alpha show an interaction with NLD-I similar to that of SV40 large T antigen NLS. Deletion analysis indicates that both stretches of basic residues are necessary for binding to importin alpha. The above experimental results lead to the conclusion that importin alpha acts as cytoplasmic receptor for proteins characterized by a bipartite NLS signal that extends up to 37 residues.

Importin alpha binds to an unusual bipartite nuclear localization signal in the heterogeneous ribonucleoprotein type I

ROMANELLI, Maria;MORANDI, Carlo
2002-01-01

Abstract

The heterogeneous nuclear ribonucleoprotein (hnRNP) type I, a modulator of alternative splicing, localizes in the nucleoplasm of mammalian cells and in a discrete perinucleolar structure. HnRNP I contains a novel type of bipartite nuclear localization signal (NLS) at the N-terminus of the protein that we have previously named nuclear determinant localization type I (NLD-I). Recently, a neural counterpart of hnRNP I has been identified that contains a putative NLS with two strings of basic amino acids separated by a spacer of 30 residues. In the present study we show that the neural hnRNP I NLS is necessary and sufficient for nuclear localization and represents a variant of the novel bipartite NLS present in the NLD-I domain. Furthermore, we demonstrate that the NLD-I is transported into the nucleus by cytoplasmic factor(s) with active transport modality. Binding assays using recombinant importin alpha show an interaction with NLD-I similar to that of SV40 large T antigen NLS. Deletion analysis indicates that both stretches of basic residues are necessary for binding to importin alpha. The above experimental results lead to the conclusion that importin alpha acts as cytoplasmic receptor for proteins characterized by a bipartite NLS signal that extends up to 37 residues.
2002
heterogeneous ribonucleoprotein-I, polypyrimidine tract-binding protein, PTB, nuclear localization signal, importin α
The heterogeneous nuclear ribonucleoprotein (hnRNP) type I, a modulator of alternative splicing, localizes in the nucleoplasm of mammalian cells and in a discrete perinucleolar structure. HnRNP I contains a novel type of bipartite nuclear localization signal (NLS) at the N-terminus of the protein that we have previously named nuclear determinant localization type I (NLD-I). Recently, a neural counterpart of hnRNP I has been identified that contains a putative NLS with two strings of basic amino acids separated by a spacer of 30 residues. In the present study we show that the neural hnRNP I NLS is necessary and sufficient for nuclear localization and represents a variant of the novel bipartite NLS present in the NLD-I domain. Furthermore, we demonstrate that the NLD-I is transported into the nucleus by cytoplasmic factor(s) with active transport modality. Binding assays using recombinant importin α show an interaction with NLD-I similar to that of SV40 large T antigen NLS. Deletion analysis indicates that both stretches of basic residues are necessary for binding to importin α. The above experimental results lead to the conclusion that importin α acts as cytoplasmic receptor for proteins characterized by a bipartite NLS signal that extends up to 37 residues.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/302879
Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 29
social impact