The programming capacity for the synthesis of human dihydrofolic acid reductase in a rabbit reticulocyte lysate has been found to be greatly enhanced in the polysomal poly(A)-containing RNA from a methotrexate-resistant human cell variant (6A3), as compared to the RNA from its parental line (VA2-B). A major fraction of this promoting activity is associated with a 3.8 × 103 base RNA species detectable as a band in the ethidium bromide-stained electrophoretic pattern of the RNA from 6A3 cells, but not in the RNA from VA2-B cells. Furthermore, sucrose gradient fractionation experiments have indicated that another substantial portion of the messenger activity is associated with RNA components around 103 bases in size. Double-stranded complementary DNA synthesized from total poly(A)-containing RNA of 6A3 cells has been size fractionated, and both large (1400 to 3800 base-pairs) and small size complementary DNA (600 to 1400 base-pairs) species have been used separately to transform Escherich...
Multiple forms of human dihydrofolate reductase messenger RNA. Cloning and expression in Escherichia coli of their DNA coding sequence
MORANDI, Carlo;MOTTES, Monica;
1982-01-01
Abstract
The programming capacity for the synthesis of human dihydrofolic acid reductase in a rabbit reticulocyte lysate has been found to be greatly enhanced in the polysomal poly(A)-containing RNA from a methotrexate-resistant human cell variant (6A3), as compared to the RNA from its parental line (VA2-B). A major fraction of this promoting activity is associated with a 3.8 × 103 base RNA species detectable as a band in the ethidium bromide-stained electrophoretic pattern of the RNA from 6A3 cells, but not in the RNA from VA2-B cells. Furthermore, sucrose gradient fractionation experiments have indicated that another substantial portion of the messenger activity is associated with RNA components around 103 bases in size. Double-stranded complementary DNA synthesized from total poly(A)-containing RNA of 6A3 cells has been size fractionated, and both large (1400 to 3800 base-pairs) and small size complementary DNA (600 to 1400 base-pairs) species have been used separately to transform Escherich...I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.