We applied calcitonin gene-related peptide (CGRP) by continuous perfusion of the extrajunctional surface of the adult rat soleus muscle in vivo. We obtained this through a fine polyethylene catheter connected to an Alzet pump implanted in the animal. The perfusion induced a local acetylcholine receptor accumulation in the membrane of the muscle fibres starting with a delay of one to two days, provided a chronic conduction block of soleus innervation was concomitantly present. The effect was prominent, being higher than that following denervation. The lack of acetylcholine receptor accumulation observed in sham perfused animals and the co-administration of CGRP and its competitive antagonist peptide, hCGRP(8-37), eliminates the possibility that the response to CGRP application represents an inflammatory reaction to foreign bodies instead of a specific effect of the peptide.We suggest that CGRP may act on the extrajunctional membrane of muscle fibres to help induce acetylcholine receptor accumulation after appropriate receptors for the peptide are re-expressed due to muscle paralysis. Whilst this is compatible with a role of CGRP in synaptogenesis, a recent study showed that alpha-CGRP(-/-) mutant mice have normal neuromuscular junction development. However, given the redundancy of factors involved in acetylcholine receptor accumulation, further experiments on multiple knock-outs need to be performed before a final conclusion is reached about the physiological significance of CGRP.

In vivo acetylcholine receptor expression induced by calcitonin gene-related peptide in rat soleus muscle

BUFFELLI, Mario Rosario;PASINO, Efrem;CANGIANO, Alberto
2001-01-01

Abstract

We applied calcitonin gene-related peptide (CGRP) by continuous perfusion of the extrajunctional surface of the adult rat soleus muscle in vivo. We obtained this through a fine polyethylene catheter connected to an Alzet pump implanted in the animal. The perfusion induced a local acetylcholine receptor accumulation in the membrane of the muscle fibres starting with a delay of one to two days, provided a chronic conduction block of soleus innervation was concomitantly present. The effect was prominent, being higher than that following denervation. The lack of acetylcholine receptor accumulation observed in sham perfused animals and the co-administration of CGRP and its competitive antagonist peptide, hCGRP(8-37), eliminates the possibility that the response to CGRP application represents an inflammatory reaction to foreign bodies instead of a specific effect of the peptide.We suggest that CGRP may act on the extrajunctional membrane of muscle fibres to help induce acetylcholine receptor accumulation after appropriate receptors for the peptide are re-expressed due to muscle paralysis. Whilst this is compatible with a role of CGRP in synaptogenesis, a recent study showed that alpha-CGRP(-/-) mutant mice have normal neuromuscular junction development. However, given the redundancy of factors involved in acetylcholine receptor accumulation, further experiments on multiple knock-outs need to be performed before a final conclusion is reached about the physiological significance of CGRP.
2001
synaptogenesis; anterograde trophic regulation; AChR development; neuropeptides; muscle membrane properties
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/301871
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 23
social impact