For the two dimensional complex parabolic Ginzburg-Landau equation we prove that, asymptotically, vortices evolve according to a simple ordinary differential equation, which is a gradient flow of the Kirchhoff-Onsager functional. This convergence holds except for a finite number of times, corresponding to vortex collisions and splittings, which we describe carefully. The only assumption is a natural energy bound on the initial data.

Dynamics of multiple-degree Ginzburg-Landau vortices

ORLANDI, Giandomenico;
2007-01-01

Abstract

For the two dimensional complex parabolic Ginzburg-Landau equation we prove that, asymptotically, vortices evolve according to a simple ordinary differential equation, which is a gradient flow of the Kirchhoff-Onsager functional. This convergence holds except for a finite number of times, corresponding to vortex collisions and splittings, which we describe carefully. The only assumption is a natural energy bound on the initial data.
2007
Ginzburg-Landau; vortex dynamics; Kirchoff-Onsager
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/300456
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 19
social impact