A novel apparatus, composed by a controllable treadmill, a computer, and an ultrasonic range finder, is here proposed to help investigation of many aspects of spontaneous locomotion. The acceleration or deceleration of the subject, detected by the sensor and processed by the computer, is used to accelerate or decelerate the treadmill in real time. The system has been used to assess, in eight subjects, the self-selected speed of walking and running, the maximum "reasonable" speed of walking, and the minimum reasonable speed of running at different gradients (from level up to +25%). This evidenced the speed range at which humans neither walk nor run, from 7.2 +/- 0.6 to 8.4 +/- 1.1 km/h for level locomotion, slightly narrowing at steeper slopes. These data confirm previous results, obtained indirectly from stride frequency recordings. The self-selected speed of walking decreases with increasing gradient (from 5.0 +/- 0.8 km/h at 0% to 3.0 +/- 0.9 km/h at +25%) and seems to be approximately 30% higher than the speed that minimizes the metabolic energy cost of walking, obtained from the literature, at all the investigated gradients. The advantages, limitations, and potential applications of the newly proposed methodology in physiology, biomechanics, and pathology of locomotion are discussed in this paper.

A feedback controlled treadmill (treadmill on demand) and the spontaneous speed of walking and running in humans

Zamparo P.;
2003-01-01

Abstract

A novel apparatus, composed by a controllable treadmill, a computer, and an ultrasonic range finder, is here proposed to help investigation of many aspects of spontaneous locomotion. The acceleration or deceleration of the subject, detected by the sensor and processed by the computer, is used to accelerate or decelerate the treadmill in real time. The system has been used to assess, in eight subjects, the self-selected speed of walking and running, the maximum "reasonable" speed of walking, and the minimum reasonable speed of running at different gradients (from level up to +25%). This evidenced the speed range at which humans neither walk nor run, from 7.2 +/- 0.6 to 8.4 +/- 1.1 km/h for level locomotion, slightly narrowing at steeper slopes. These data confirm previous results, obtained indirectly from stride frequency recordings. The self-selected speed of walking decreases with increasing gradient (from 5.0 +/- 0.8 km/h at 0% to 3.0 +/- 0.9 km/h at +25%) and seems to be approximately 30% higher than the speed that minimizes the metabolic energy cost of walking, obtained from the literature, at all the investigated gradients. The advantages, limitations, and potential applications of the newly proposed methodology in physiology, biomechanics, and pathology of locomotion are discussed in this paper.
2003
biomechanics; physiology; pathology; gait
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/236618
Citazioni
  • ???jsp.display-item.citation.pmc??? 27
  • Scopus 103
  • ???jsp.display-item.citation.isi??? 92
social impact