The production of polyhydroxyalkanoates (PHAs) from organic acids by mixed bacterial cultures using a process based on aerobic enrichment of activated sludge, that selects for mixed microbial cultures able to store PHAs at high rates and yields, is described. Enrichment resulted from the selective pressure established by periodic feeding the carbon source in a sequencing batch reactor (SBR); a mixture of acetic, lactic and propionic acids was fed at high frequency (2 hourly), high dilution rate (1 d -1), and at high organic load rate (12.75 g chemical oxygen demand (COD) L -1 d -1). The performance of the SBR was assessed by microbial biomass and PHA production as well as the composition and polymer content of the biomass. A final batch stage was used to increase the polymer concentration of the excess sludge produced in the SBR and in which the behaviour of the biomass was investigated by determining PHA production rates and yields. The microbial biomass selected in the SBR produced PHAs at high rate [278 mg PHAs (as COD) g biomass (as COD) -1 h -1, with a yield of 0.39 mg PHAs (as COD) mg removed substrates (as COD) -1], reaching a polymer content higher than 50% (on a COD basis). The stored polymer was the copolymer poly(3-hydroxybutyrate/3-hydroxyvalerate) [P(HB/HV)], with an HV fraction of 18% mol mol -1. The microbial community selected in the SBR was analysed by DGGE (denaturing gradient gel electrophoresis). The operating conditions of the SBR were shown to select for a restricted microbial population which appeared quite different in terms of composition with respect to the initial microbial cenosis in the activated sludge used as inoculum. On the basis of the sequencing of the major bands in the DGGE profiles, four main genera were identified: a Methylobacteriaceae bacterium, Flavobacterium sp, Candidatus Meganema perideroedes, and Thauera sp. The effects of nitrogen depletion (ie absence of growth) and pH variation were also investigated in the batch stage and compared with the SBR operative mode. Absence of growth did not stimulate higher PHA production, so indicating that the periodic feed regime fully exploited the storage potential of the enriched culture. Polymer production rates remained high between pH 6.5 and 9.5, whereas the HV content in the stored polymer strongly increased as the pH value increased. This study shows that polymer composition in the final batch stage can readily be controlled independently from the feed composition in the SBR.
Storage of biodegradable polymers by an enriched microbial community in a Sequencing Batch Reactor operated at high organic load rate
VALLINI, Giovanni
2005-01-01
Abstract
The production of polyhydroxyalkanoates (PHAs) from organic acids by mixed bacterial cultures using a process based on aerobic enrichment of activated sludge, that selects for mixed microbial cultures able to store PHAs at high rates and yields, is described. Enrichment resulted from the selective pressure established by periodic feeding the carbon source in a sequencing batch reactor (SBR); a mixture of acetic, lactic and propionic acids was fed at high frequency (2 hourly), high dilution rate (1 d -1), and at high organic load rate (12.75 g chemical oxygen demand (COD) L -1 d -1). The performance of the SBR was assessed by microbial biomass and PHA production as well as the composition and polymer content of the biomass. A final batch stage was used to increase the polymer concentration of the excess sludge produced in the SBR and in which the behaviour of the biomass was investigated by determining PHA production rates and yields. The microbial biomass selected in the SBR produced PHAs at high rate [278 mg PHAs (as COD) g biomass (as COD) -1 h -1, with a yield of 0.39 mg PHAs (as COD) mg removed substrates (as COD) -1], reaching a polymer content higher than 50% (on a COD basis). The stored polymer was the copolymer poly(3-hydroxybutyrate/3-hydroxyvalerate) [P(HB/HV)], with an HV fraction of 18% mol mol -1. The microbial community selected in the SBR was analysed by DGGE (denaturing gradient gel electrophoresis). The operating conditions of the SBR were shown to select for a restricted microbial population which appeared quite different in terms of composition with respect to the initial microbial cenosis in the activated sludge used as inoculum. On the basis of the sequencing of the major bands in the DGGE profiles, four main genera were identified: a Methylobacteriaceae bacterium, Flavobacterium sp, Candidatus Meganema perideroedes, and Thauera sp. The effects of nitrogen depletion (ie absence of growth) and pH variation were also investigated in the batch stage and compared with the SBR operative mode. Absence of growth did not stimulate higher PHA production, so indicating that the periodic feed regime fully exploited the storage potential of the enriched culture. Polymer production rates remained high between pH 6.5 and 9.5, whereas the HV content in the stored polymer strongly increased as the pH value increased. This study shows that polymer composition in the final batch stage can readily be controlled independently from the feed composition in the SBR.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.