Two bacterial isolates were obtained in axenic culture from the rhizosphere soil of Astragalus bisulcatus, a legume able to hyperaccumulate selenium. Both strains resulted of particular interest for their high resistance to the toxic oxyanion SeO3(2-) (selenite, Se(IV)). On the basis of molecular and biochemical analyses, these two isolates were attributed to the species Bacillus mycoides and Stenotrophomonas maltophilia, respectively. Their capability in axenic culture to precipitate the soluble, bioavailable and highly toxic selenium form selenite to insoluble and relatively non-toxic Se(0) (elemental selenium) was evaluated in defined medium added with 0.2 or 0.5 mM Se(IV). Both strains showed to completely reduce 0.2 mM selenite in 120 h, while 0.5 mM Se(IV) was reduced up to 67% of the initial concentration by B. mycoides and to about 50% by S. maltophilia in 48 h. Together in a dual consortium, B. mycoides and S. maltophilia increased the kinetics of selenite reduction, thus improving the efficiency of the process. A model system for selenium rhizofiltration based on plant-rhizobacteria interactions has been proposed.

Rhizosphere-induced selenium precipitation for possible applications in phytoremediation of Se polluted effluents

VALLINI, Giovanni;LAMPIS, Silvia
2005-01-01

Abstract

Two bacterial isolates were obtained in axenic culture from the rhizosphere soil of Astragalus bisulcatus, a legume able to hyperaccumulate selenium. Both strains resulted of particular interest for their high resistance to the toxic oxyanion SeO3(2-) (selenite, Se(IV)). On the basis of molecular and biochemical analyses, these two isolates were attributed to the species Bacillus mycoides and Stenotrophomonas maltophilia, respectively. Their capability in axenic culture to precipitate the soluble, bioavailable and highly toxic selenium form selenite to insoluble and relatively non-toxic Se(0) (elemental selenium) was evaluated in defined medium added with 0.2 or 0.5 mM Se(IV). Both strains showed to completely reduce 0.2 mM selenite in 120 h, while 0.5 mM Se(IV) was reduced up to 67% of the initial concentration by B. mycoides and to about 50% by S. maltophilia in 48 h. Together in a dual consortium, B. mycoides and S. maltophilia increased the kinetics of selenite reduction, thus improving the efficiency of the process. A model system for selenium rhizofiltration based on plant-rhizobacteria interactions has been proposed.
2005
Astragalus bisulcatus; Bacillus mycoides; ELMENTAL SELENIUM; RHIZOFILTRATION; SELENITE PRECIPITATION; Stenotrophomonas maltophilia
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/235869
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 26
social impact