In previous work we gave an approach, based on labelled natural deduction, for formalizing proof systems for a large class of propositional modal logics that includes K, D, T, B, S4, S4.2, KD45, and S5. Here we extend this approach to quantified modal logics, providing formalizations for logics with varying, increasing, decreasing, or constant domains. The result is modular with respect to both properties of the accessibility relation in the Kripke frame and the way domains of individuals change between worlds. Our approach has a modular metatheory too; soundness, completeness and normalization are proved uniformly for every logic in our class. Finally, our work leads to a simple implementation of a modal logic theorem prover in a standard logical framework.

Labelled Modal Logics: Quantifiers

VIGANO', Luca
1998

Abstract

In previous work we gave an approach, based on labelled natural deduction, for formalizing proof systems for a large class of propositional modal logics that includes K, D, T, B, S4, S4.2, KD45, and S5. Here we extend this approach to quantified modal logics, providing formalizations for logics with varying, increasing, decreasing, or constant domains. The result is modular with respect to both properties of the accessibility relation in the Kripke frame and the way domains of individuals change between worlds. Our approach has a modular metatheory too; soundness, completeness and normalization are proved uniformly for every logic in our class. Finally, our work leads to a simple implementation of a modal logic theorem prover in a standard logical framework.
Quantified modal logics; free logic; natural deduction; labelled deductive systems
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/235827
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact