Reportedly, beta-amyloid peptides (Abeta40 and Abeta42) induce the neurodegenerative changes of Alzheimer's disease (AD) both directly by interacting with components of the cell surface to trigger apoptogenic signaling and indirectly by activating astrocytes and microglia to produce excess amounts of inflammatory cytokines. A possible cell surface target for Abetas is the p75 neurotrophin receptor (p75(NTR)). By using SK-N-BE neuroblastoma cells without neurotrophin receptors or engineered to express the full-length p75(NTR) or various parts of it, we have proven that p75(NTR) does mediate the Abeta-induced cell killing via its intracellular death domain (DD). This signaling via the DD activates caspase-8, which then activates caspase-3 and apoptogenesis. We also found a strong cytocidal interaction of direct p75(NTR)-mediated and indirect pro-inflammatory cytokine-mediated neuronal damage induced by Abeta. In fact, pro-inflammatory cytokines such as TNF-alpha and IL-1beta from Abeta-activated microglia potentiated the neurotoxic action of Aalpha mediated by p75(NTR) signaling. The pro-inflammatory cytokines probably amplify neuronal damage and killing by causing astrocytes to flood their associated neurons with NO and its lethal oxidizing ONOO- derivative. Indeed, we have found that a combination of three major pro-inflammatory cytokines, IL-1beta+IFN-gamma+TNF-alpha, causes normal adult human astrocytes (NAHA) to express nitric oxide synthase-2 (NOS-2) and make dangerously large amounts of NO via mitogen-activated protein kinases (MAPKs). Soluble Abeta40, the major amyloid precursor protein cleavage product, by itself stimulates astrocytes to express NOS-2 and make NO, possibly by activating p75(NTR) receptors, which they share with neurons, and can considerably amplify NOS-2 expression by the pro-inflammatory cytokine trio. These observations have uncovered a deadly synergistic interaction of Abeta peptides with pro-inflammatory cytokines in the neuron-astrocyte functional units of the AD brain. Finally, we have found that p75(NTR) and its DD also mediate the killing of SK-N-BE human neuroblastoma cells by the prion protein fragment PrP106-126. Thus, neurons expressing p75(NTR) as well as pro-inflammatory cytokine receptors are likely the preferential targets of Abetas and prions and the neurodegenerative diseases they cause.
The killing of neurons by beta-amyloid peptides, prions, and pro-inflammatory cytokines.
CHIARINI, Anna Maria;DAL PRÀ, Ilaria Pierpaola;ARMATO, Ubaldo
2006-01-01
Abstract
Reportedly, beta-amyloid peptides (Abeta40 and Abeta42) induce the neurodegenerative changes of Alzheimer's disease (AD) both directly by interacting with components of the cell surface to trigger apoptogenic signaling and indirectly by activating astrocytes and microglia to produce excess amounts of inflammatory cytokines. A possible cell surface target for Abetas is the p75 neurotrophin receptor (p75(NTR)). By using SK-N-BE neuroblastoma cells without neurotrophin receptors or engineered to express the full-length p75(NTR) or various parts of it, we have proven that p75(NTR) does mediate the Abeta-induced cell killing via its intracellular death domain (DD). This signaling via the DD activates caspase-8, which then activates caspase-3 and apoptogenesis. We also found a strong cytocidal interaction of direct p75(NTR)-mediated and indirect pro-inflammatory cytokine-mediated neuronal damage induced by Abeta. In fact, pro-inflammatory cytokines such as TNF-alpha and IL-1beta from Abeta-activated microglia potentiated the neurotoxic action of Aalpha mediated by p75(NTR) signaling. The pro-inflammatory cytokines probably amplify neuronal damage and killing by causing astrocytes to flood their associated neurons with NO and its lethal oxidizing ONOO- derivative. Indeed, we have found that a combination of three major pro-inflammatory cytokines, IL-1beta+IFN-gamma+TNF-alpha, causes normal adult human astrocytes (NAHA) to express nitric oxide synthase-2 (NOS-2) and make dangerously large amounts of NO via mitogen-activated protein kinases (MAPKs). Soluble Abeta40, the major amyloid precursor protein cleavage product, by itself stimulates astrocytes to express NOS-2 and make NO, possibly by activating p75(NTR) receptors, which they share with neurons, and can considerably amplify NOS-2 expression by the pro-inflammatory cytokine trio. These observations have uncovered a deadly synergistic interaction of Abeta peptides with pro-inflammatory cytokines in the neuron-astrocyte functional units of the AD brain. Finally, we have found that p75(NTR) and its DD also mediate the killing of SK-N-BE human neuroblastoma cells by the prion protein fragment PrP106-126. Thus, neurons expressing p75(NTR) as well as pro-inflammatory cytokine receptors are likely the preferential targets of Abetas and prions and the neurodegenerative diseases they cause.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.