The development of CdTe/CdS solar cells on flexible substrates is reviewed in this article. Photovoltaic structures on lightweight and flexible substrates have several advantages over the heavy glass based structures in both terrestrial and space applications. The cells mounted on flexible foil are not fragile, the requirements of the supporting structures are minimum and they can be wrapped onto any suitably oriented or curved structures. The specific power of the solar cells is an important factor in space applications and hence development of photovoltaic devices on light weight substrates is interesting. CdTe is one of the leading candidates for photovoltaic applications due to its optimum band gap for the efficient photo-conversion and robustness for industrial production with a variety of film preparation methods. Flexible solar cells with conversion efficiencies exceeding 11% have been developed on polyimide foils. The development of CdTe devices on metallic substrates is impeded due to the lack of a proper ohmic contact between CdTe and the substrate. The polymer substrate has the advantage that the devices can be prepared in both "superstrate" and "substrate" configurations.

CdTe/CdS solar cells on flexible substrates

ROMEO, Alessandro;
2004-01-01

Abstract

The development of CdTe/CdS solar cells on flexible substrates is reviewed in this article. Photovoltaic structures on lightweight and flexible substrates have several advantages over the heavy glass based structures in both terrestrial and space applications. The cells mounted on flexible foil are not fragile, the requirements of the supporting structures are minimum and they can be wrapped onto any suitably oriented or curved structures. The specific power of the solar cells is an important factor in space applications and hence development of photovoltaic devices on light weight substrates is interesting. CdTe is one of the leading candidates for photovoltaic applications due to its optimum band gap for the efficient photo-conversion and robustness for industrial production with a variety of film preparation methods. Flexible solar cells with conversion efficiencies exceeding 11% have been developed on polyimide foils. The development of CdTe devices on metallic substrates is impeded due to the lack of a proper ohmic contact between CdTe and the substrate. The polymer substrate has the advantage that the devices can be prepared in both "superstrate" and "substrate" configurations.
2004
thin film; flexible solar cells; CdTe
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/233727
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 190
  • ???jsp.display-item.citation.isi??? 171
social impact