In the P50 gating or conditioning-testing paradigm in the rat, two identical click stimuli are presented with an inter-click interval of 500 ms. The reaction towards the second click, as measured with evoked potentials, is reduced in respect to that towards the first click; this phenomenon is called sensory gating. In the present experiments, the inter-click interval was varied systematically and auditory evoked potentials were measured. Sensory gating was found to occur only at intervals between 500 and 1000 ms, but not at longer intervals. Fos immunohistochemistry was then performed using two groups of rats exposed to double clicks: the inter-click interval was 500 ms in the experimental group and 2500 ms in the control group. Fos induction was analyzed in selected brain structures. In the auditory pathways, Fos-immunoreactive neurons were found in both groups of rats in the inferior colliculus and medial geniculate body. Fos-immunoreactive cells were also examined in the septum and hippocampus. In the ventral part of the lateral septal nucleus, the labeled neurons were significantly fewer in the experimental animals compared to the control group. Smaller and non-significant quantitative differences of Fos-positive neurons were documented in the medial septum and hippocampal CA1 region. These data point out a selective decrease in the lateral septum of Fos induced by auditory sensory gating, and suggest an involvement of this structure, and possibly of other parts of the septo-hippocampal system, in sensory gating mechanisms. The results might be relevant for theories on sensory gating deficits in schizophrenia.
Neural correlates of sensory gating in the rat: decreased Fos induction in the lateral septum
FABENE, Paolo;
2001-01-01
Abstract
In the P50 gating or conditioning-testing paradigm in the rat, two identical click stimuli are presented with an inter-click interval of 500 ms. The reaction towards the second click, as measured with evoked potentials, is reduced in respect to that towards the first click; this phenomenon is called sensory gating. In the present experiments, the inter-click interval was varied systematically and auditory evoked potentials were measured. Sensory gating was found to occur only at intervals between 500 and 1000 ms, but not at longer intervals. Fos immunohistochemistry was then performed using two groups of rats exposed to double clicks: the inter-click interval was 500 ms in the experimental group and 2500 ms in the control group. Fos induction was analyzed in selected brain structures. In the auditory pathways, Fos-immunoreactive neurons were found in both groups of rats in the inferior colliculus and medial geniculate body. Fos-immunoreactive cells were also examined in the septum and hippocampus. In the ventral part of the lateral septal nucleus, the labeled neurons were significantly fewer in the experimental animals compared to the control group. Smaller and non-significant quantitative differences of Fos-positive neurons were documented in the medial septum and hippocampal CA1 region. These data point out a selective decrease in the lateral septum of Fos induced by auditory sensory gating, and suggest an involvement of this structure, and possibly of other parts of the septo-hippocampal system, in sensory gating mechanisms. The results might be relevant for theories on sensory gating deficits in schizophrenia.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.