Neutrophils are versatile cells, which play a role, not only in inflammatory processes but also in immune and antitumoral responses. Recently, we have reported that interferon (IFN)-activated neutrophils are able to release biologically active tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL/APO2 ligand), a molecule exerting selective, apoptotic activities toward tumor and virus-infected cells, as well as immunoregulatory functions on activated T lymphocytes. Herein, we show that only a minor fraction of the total TRAIL, newly synthesized by IFN-activated neutrophils within 24 h, is released outside, the rest being retained intracellularly, mainly in secretory vesicles and light membrane fractions. We demonstrate that the intracellular pool of TRAIL present in IFN-pretreated neutrophils is rapidly mobilizable to the cell surface and can be secreted following exposure to proinflammatory mediators such as TNF-alpha, lipopolysaccharide, formyl-methionyl-leucyl-phenylalanine, CXC chemokine ligand 8/interleukin-8, insoluble immunocomplexes, and heat shock protein Gp96. These various proinflammatory agonists functioned as effective secretagogue molecules only, in that they failed to augment TRAIL mRNA expression or TRAIL de novo synthesis in freshly isolated neutrophils or cultured with or without IFN. In addition, supernatants from IFN-treated neutrophils stimulated with proinflammatory mediators induced the apoptosis of target cells more effectively than supernatants from neutrophils activated with IFNs alone. Collectively, our results uncover a novel mechanism, whereby the release of soluble TRAIL by neutrophils can be greatly amplified and further reinforce the notion that neutrophils are important cells in tumor surveillance and immunomodulation

Interferon-activated neutrophils store a TNF-related apoptosis-inducing ligand (TRAIL/Apo-2 ligand) intracellular pool that is readily mobilizable following exposure to proinflammatory mediators.

CASSATELLA, Marco Antonio;CALZETTI, Federica;TAMASSIA, Nicola;TECCHIO, Cristina
2006-01-01

Abstract

Neutrophils are versatile cells, which play a role, not only in inflammatory processes but also in immune and antitumoral responses. Recently, we have reported that interferon (IFN)-activated neutrophils are able to release biologically active tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL/APO2 ligand), a molecule exerting selective, apoptotic activities toward tumor and virus-infected cells, as well as immunoregulatory functions on activated T lymphocytes. Herein, we show that only a minor fraction of the total TRAIL, newly synthesized by IFN-activated neutrophils within 24 h, is released outside, the rest being retained intracellularly, mainly in secretory vesicles and light membrane fractions. We demonstrate that the intracellular pool of TRAIL present in IFN-pretreated neutrophils is rapidly mobilizable to the cell surface and can be secreted following exposure to proinflammatory mediators such as TNF-alpha, lipopolysaccharide, formyl-methionyl-leucyl-phenylalanine, CXC chemokine ligand 8/interleukin-8, insoluble immunocomplexes, and heat shock protein Gp96. These various proinflammatory agonists functioned as effective secretagogue molecules only, in that they failed to augment TRAIL mRNA expression or TRAIL de novo synthesis in freshly isolated neutrophils or cultured with or without IFN. In addition, supernatants from IFN-treated neutrophils stimulated with proinflammatory mediators induced the apoptosis of target cells more effectively than supernatants from neutrophils activated with IFNs alone. Collectively, our results uncover a novel mechanism, whereby the release of soluble TRAIL by neutrophils can be greatly amplified and further reinforce the notion that neutrophils are important cells in tumor surveillance and immunomodulation
2006
LPS; fMLP; CXCL; neutrophils; monocytes
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/227981
Citazioni
  • ???jsp.display-item.citation.pmc??? 25
  • Scopus 79
  • ???jsp.display-item.citation.isi??? 76
social impact