Intracerebroventricular (ICV) injection of N-methyl-D-aspartate (NMDA) was shown to induce generalized seizures in mice. The competitive NMDA antagonists DL-2-amino-5-phosphonovaleroate (DL-AP7) and 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonate (CPP), the NMDA "channel blocker" antagonist (+)-5-methyl-10,11-dihydro 5H-dibenzo-[a,d] cycloheptan-5,10-imine maleate (MK-801) and the strychnine-insensitive glycine antagonists kynurenic acid (KYNA) and 7-chloro-kynurenic acid (7-Cl-KYNA), when co-administered (ICV) with NMDA, antagonized NMDA-induced generalized seizures. Administration (ICV) of DL-AP7, CPP and MK-801 resulted in impared learning performance in a passive avoidance task in mice, with ED50 close to the anticonvulsant dose. The glycine antagonists KYNA and 7-Cl-KYNA at high doses significantly failed to affect performance in the same model of learning. The results indicate that compounds acting at the strychnine-insensitive glycine site may have a larger "therapeutic window" as anticonvulsants than antagonists of the NMDA receptor and channel.

The effect of NMDA- and strychnine- insensitive glycine-site antagonists on NMDA-mediated convulsions and learning.

CHIAMULERA, Cristiano;
1990-01-01

Abstract

Intracerebroventricular (ICV) injection of N-methyl-D-aspartate (NMDA) was shown to induce generalized seizures in mice. The competitive NMDA antagonists DL-2-amino-5-phosphonovaleroate (DL-AP7) and 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonate (CPP), the NMDA "channel blocker" antagonist (+)-5-methyl-10,11-dihydro 5H-dibenzo-[a,d] cycloheptan-5,10-imine maleate (MK-801) and the strychnine-insensitive glycine antagonists kynurenic acid (KYNA) and 7-chloro-kynurenic acid (7-Cl-KYNA), when co-administered (ICV) with NMDA, antagonized NMDA-induced generalized seizures. Administration (ICV) of DL-AP7, CPP and MK-801 resulted in impared learning performance in a passive avoidance task in mice, with ED50 close to the anticonvulsant dose. The glycine antagonists KYNA and 7-Cl-KYNA at high doses significantly failed to affect performance in the same model of learning. The results indicate that compounds acting at the strychnine-insensitive glycine site may have a larger "therapeutic window" as anticonvulsants than antagonists of the NMDA receptor and channel.
1990
AMMINOADICI ECCITATORI; GLICINO ANTAGONISTI; EPILESSIA
File in questo prodotto:
File Dimensione Formato  
chiamulera 1990.pdf

solo utenti autorizzati

Tipologia: Versione dell'editore
Licenza: Accesso ristretto
Dimensione 1.31 MB
Formato Adobe PDF
1.31 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11562/227269
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact